
Prof. Allen Knutson’s Math 2240 Final, May 15, 2012

Numbers in boxes are the point scores for their questions.

1.True or false? If false, give a counterexample. (If you think it’s really

obvious that it’s a counterexample, don’t bother proving it.) If true,

you don’t have to prove it.

[3 apiece]

Every continuous function is Lebesgue integrable.

A. False; f = 1 on R is not.

Every Riemann integrable function is continuous.

A. False; f = 1[0,17] is not.

Every Riemann integrable function is Lebesgue integrable.

A. True.

Every Lebesgue integrable function is Riemann integrable.

A. False; f = 1Q∩[0,1] is not.

Every continuous, bounded, Lebesgue integrable function of bounded

support is Riemann integrable.

A. True; one doesn’t even need to assume Lebesgue integrable (it fol-

lows).

Every Lebesgue integrable function has bounded support.

A. False; f = 1Z is Lebesgue integrable.

2. [10]

Let S ⊆ R2 be the half-disc defined by x2+y2 ≤ 1, x ≥ 0. Integrate the

function f(x, y) = x over it via Fubini’s theorem. Do it in both orders

– over x then y, and vice versa. Hint: the substitution z = 1− x2 will

help more than trig substitutions.
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A. ∫ 1
x=0

∫√1−x2
y=−
√
1−x2

x dy dx =

∫ 1
x=0

x

∫√1−x2
y=−
√
1−x2

dy dx

=

∫ 1
x=0

x2
√
1− x2 dx

=

∫ 0
z=1

−
√
z dz

=

∫ 1
z=0

√
z dz

=
z3/2

3/2
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= 2/3.∫ 1
y=−1

∫√1−y2
x=0

x dx dy

=

∫ 1
y=−1

x2

2
|

√
1−y2

0 dy

=

∫ 1
y=−1

1− y2

2
dy

=
y− y3/3

2
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= 2/3.

3. [10]

Let S ⊆ Rn have Hausdorff dimension d < n, i.e. for any ε > 0, we

can cover it fully with cubes of side-lengths r1, r2, . . . all < ε, such that∑
i r
d+ε
i < ε.

Prove that S has measure 0.

A. Since d < n, there exists ε ∈ (0, n − d), so d + ε < n. If ri < 1,

then rni < r
d+ε
i . Adding them up,∑

i

rni <
∑

rd+εi < ε

which is the bound we needed to show to say S has measure 0.



4. Consider, if you will, two Lebesgue integrable functions f, g that

aren’t Riemann integrable, but whose product fg is.

a. [5] Give an example of such a pair, where f, g are bounded with

bounded support.

A. f = 1Q∩[0,1], g = 1Q∩[2,3], so fg = 0.

b. [5] Give an example of such a pair, where f, g are continuous almost

everywhere.

A. f = 12Z, g = 12Z+1, i.e. on the evens vs. the odds. Again fg = 0.

c. [5] Can we achieve (b) and (c) with the same pair f, g?

A. Nope. If f (or g) is bounded with bounded support and continuous

almost everywhere, it’s Riemann integrable.

5. Let M be an n× n matrix, and N the matrix obtained by shaving

off M’s last row and column.

a. [5]

If M is upper triangular, show that N’s characteristic polynomial

det(N− tIn−1) divides M’s.

A. The characteristic polynomial of an upper triangular matrix with

diagonal entries d1, . . . , dm is
∏m

i=1(di−t), since the determinant of an

upper triangular matrix is the product down the diagonal.

Hence if M’s diagonal entries are m11, . . . ,mnn, the polynomials in

question are
∏n

i=1(mii − t) and
∏n−1

i=1 (mii − t).

b. [5]

Does this divisibility hold without the upper triangularity assumption?

A. Nope. Perhaps the simplest nontriangular matrix is

M =

(
0 1
1 0

)
whose characteristic polynomial is t2 − 1, which is not a multiple of

N’s, which is just t, or I guess −t, as defined above. (Here N =
(
0
)
.)



6. Let f : R2 → R be a smooth function such that

(1) g, h are two more smooth functions, with the property that

f =
∂h

∂x
−
∂g

∂y

(2) If |~v| > 17, then |f(~v)| < 17|~v|−17, and same for g and h.

Your goal: show the equality of (Lebesgue) integrals∫∞
x=1

∫∞
y=−∞ f(x, y) dx dy =

∫∞
y=−∞ h(1, y) dy.

a. [10] Set this up as a formal (i.e. nonrigorous) application of Stokes’

theorem: say what manifold-with-boundary M you’re using, what are

the forms, etc. Hint: g and (obviously) h will come into play.

A. Stokes’ theorem says ∫
M

dα =

∫
∂M

α

so it looks like M should be the half plane {(x, y) : x ≥ 1}, and dα

should be f dx∧ dy. What should α be? Some 1-form, certainly.

A general 1-form is a combination of dx and dy, say α = A dx+B dy.

Then

dα = dA∧dx+dB∧dy =
∂A

∂y
dy∧dx+

∂B

∂x
dx∧dy =

(
∂B

∂x
−
∂A

∂y

)
dx∧dy.

(There are other terms in dA and dB, but they die upon being wedged

with dx and dy.)

That begins to look like assumption (1), with A = f and B = g. So

now Stokes would say∫
(x,y):x≥1

f =

∫
(x,y):x=1

(g dx+ h dy)

but as we traverse the line x = 1, the tangent vector has no horizontal

component, so the g dx term disappears.

Therefore it becomes
∫
(x,y):x=1

h dy, which is what we wanted.



b. [5] Explain why Stokes’ theorem doesn’t quite apply as usually

stated. Then give whatever additional argument is necessary to com-

plete the proof. (Hint: look at the picture you drew, or should have

drawn, in question #2.)

A. M is noncompact. (If we didn’t include compactness in the assump-

tions of Stokes’ theorem, we could e.g. just rip out all of ∂M, which

wouldn’t change the
∫
M

side but would make the
∫
∂M

side vanish.) So

Stokes’ theorem doesn’t actually apply.

Instead, let’s apply it to a large half-disc MR, where |(x, y)| ≤ R. Then

Stokes says ∫
MR

f dx∧ dy =

∫
x=1,|(x,y)|≤R

α+

∫
x≥1,|(x,y)|=R

α

where the RHS has a term for the left edge, and the arc, of the half-disc.

Now consider the limit R → ∞. The first two terms become what we

want them to. The arc term goes to zero because of the bound (2) on g

and h. (The length of the arc increases like R1, while g and h decrease

like R−17.)

7. We know that if M is a compact oriented manifold-with-boundary,

then its boundary ∂M is a compact oriented manifold.

So let’s consider the reverse. If N is a compact oriented manifold, is

N = ∂M for some M? If N is 1-dimensional, it’s a bunch of oriented

circles, and Yes this N is the boundary of a bunch of discs (or of a

sphere with a bunch of holes chopped in it, like a Wiffler ball).

The same holds if N is 2-d (easy to visualize) or even 3-d (less easy!).

The questions below concern dimN = 0.

[4] If you were thinking of a compact oriented 0-manifoldN, and wanted

to tell someone about it over the phone, what data would you tell them

to describe it?

A. How many + points and how many − points there are.



[10] State the necessary and sufficient condition for such an N to be

the boundary of a compact 1-manifold M with boundary.

A. A compact 1-manifold with boundary is a collection of intervals.

The boundary of any one is a + point and a − point. So there should

be the same number of each.

8. Define f : R2 → R3 by f(x, y) = (x, ex, 1+y2). Let α = u du+w dv

be a 1-form on R3, in its u, v,w coordinate system.

a. [3] Compute the 1-form f∗(α).

A. u du + w dv 7→ x dx + (1 + y2) d(ex) = x dx + (1 + y2)ex dx =

(x+ (1+ y2)ex)dx.

b. [5] Set up and compute its integral over the interval x ∈ [0, 1], y = 1.

A. ∫ 1
x=0

(x+ (1+ y2)ex)dx =

∫ 1
x=0

(x+ 2ex)dx

=

(
x2

2
+ 2ex

)
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= (1/2+ 2e) − (0+ 2)

= 2e− 3/2.


