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Consider the triangle x +y + z = n,x,y,z > 0. This has ("}?) integer points; call this
set tri,. We will draw it in the plane with (n, 0, 0) at the lower left, (0, n, 0) at the top, and
(0,0,n) in the lower right.

A hive order n, or n-hive, is a function h : tri,, — Z satisfying certain inequalities.
Here are four equivalent ways to state them:

1. On each unit rhombus in the triangle, the sum across the short diagonal is greater
than or equal to the sum across the long diagonal.
2.

hix+1,y,z4+1)+h(x,y+1,z4+1) > h(x+1,y+1,z) + h(x,y,z+ 2)

when these four points are all in tri,,, and likewise for the 120° and 240° rotations of
the hive.

3. If you extend h to a real-valued function on the solid triangle by making it linear on
each little triangle (x + 1,v, z) (x,u + 1,2) (x,u,z+ 1), his convex.

4. If you have two 0, £1-vectors ¥, W of sum zero, with dot product 1, then

diff; - diffzh > 0

wherever it is defined.

(Note that the definition also makes sense for real-valued functions, in which case we
will speak of a real hive.)

Call these inequalities the rhombus inequalities on a hive. They naturally come in
three families, according to the orientation of the rhombus.

Proposition. Let ay, ar,... ,a, be the numbers on one side of a hive. Then a is convex, i.e.

a; > %(ai_] + ait1). Put another way, the list (a; — aiyq1) is a dominant weight for GL,,(C).

Proof. There are two rhombi with an obtuse vertex at a;. Adding the two corresponding
rhombus inequalities, we get the desired result. O

We will mostly be interested in hives whose lower left entry is zero. Let HIVE,,, denote
the set of hives (with lower left entry zero) such that the differences in the boundary
entries, going around counterclockwise, gives the dominant weights A, pu,v for GL,(C).
Since we get back to zero when we’re done, this requires ) ;(A; + p; +v;) = 0 for HIVEy.,
to be nonempty.

A side note (we could have made at any time). Given a dominant weight A, let A* be —A
written in reverse order (so it is again weakly decreasing). Then V). = (V,)*. Proof: the
highest weight of V) is minus the lowest weight of (V,)*. Knowing the lowest weight,
we can figure out the highest weight by hitting it with the permutation that reverses

everything.



There is a close relation of hives to G-C patterns, which we motivate with the following
result:

Proposition. Let A, 7t,v be dominant weights of GL,,(C) such that Vi, ; —mi 1 > Ay —A,. Then
the multiplicity of V. in VAQV, reduces to a weight multiplicity, of the m —v weight in V).

Proof. Ordinarily the Steinberg tensor product formula would only give this as an alter-
nating sum, } ¢ (—1)" times the (m — w(v + p) + p)-weight multiplicity in Vj. In this
extreme case, however, one can check that all these terms vanish except for w = 1. O

Our goal in this section is to prove that HIVE,,, computes the dimension of the invariant
space of V)\@V,®V,. For the moment, we content ourselves with this.

Theorem. Give a hive h € HIVE,,,,, let Oh : tri,,_1 — Z be defined by 0h(x,y,z) = h(x,y,z+
1) —h(x + 1,vy,z). Graphically, this subtracts from each entry on the hive the entry to the left
(unless there is no left; the upper left side is thrown out).

Then 0 gives an injection from HIVE,, to the set of G-C patterns with A on the bottom, and
having weight p* —v.

n+l)

Proof. Obviously we get something that looks like a G-C pattern, i.e. an array of ("

numbers in a triangle. By definition, it has A across the bottom.

To be a G-C pattern, it has to satisfy the interspersing inequalities. These follow from
the two families of rhombus inequalities having horizontal edges.

Next, we consider the weight. Since the entries in 9h are constructed as differences in
h, if we sum a row of dh, we get the rightmost entry in h minus the leftmost.

Let C be the top entry in h (in factitis }_; A; + i = — Y _; vi). Then the leftmost entry in
the (i + 1)strow of his C 4+v; + v, + ... 4+ v;, whereas the rightmostis C — pn, — 1 —
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Therefore the sum of the ith row of ohis (uj + p5 + ...+ u) — (vi+v2+...+v;). So
the weight of the Gel’fand-Cetlin pattern oh, which is defined as the differences of the row
sums, is W* —v.

So far we know that 9 lands in the advertised target. Now why is it injective? Basically,
we know the “initial conditions” of the hive (the labeling on the left side), and from that
and the differences 0h we can reconstruct h by partial-summing oh. O

What keeps it from being bijective — didn’t we just construct an inverse? Not quite, be-
cause the partially-summed guy may not satisfy the third family of rhombus inequalities.
One can show, though, that if each p; — piy1 > Ay — A, this map 9 is a (linear) bijection.

We had a homework problem (the one about half-Gel’fand-Cetlin patterns) that showed
that the Kostant partition function is a certain limiting case of weight multiplicities, es-
sentially by saying that satisfying two families of rhombus inequalities can degenerate to
satistying one, if the other becomes automatic.

The theorem above shows that weight multiplicities are themselves a limiting case of
hives, in the case that satisfying three families of rhombus inequalities degenerates to
satisfying two.



1. A LITTLE RING THEORY

Let Rep(GL,(C)) denote the ring of (formal differences of algebraic finite-dimensional)
representations of GL,,(C), with addition and multiplication coming from direct sum and
tensor product of representations. Then Rep(GL,(C)) has a canonical basis {[V)]}, the
irreps, indexed by the set of dominant weights. (The “[]” are only there to maintain a
proper distinction between an actual representation V) and the corresponding element of
Rep(GL,(C)), which is really an isomorphism class.)

Let Qm C Rep(GL,(C)), m € Z, be spanned by the [V,] with } ;A; =m.
Lemma. Rep(GLn(C)) = ®mezQm, and QmQ, < Qmtm’-

Proof. The first statement is obvious — we’ve just partitioned the basis. For the second,
recall that ) ; A; isjust the weight of the action of the center of GL,,(C) (the scalar matrices)
on Vy. So on V,\®V,, the center acts with weight 3 . A; + p;. O

This gave a gradation of Rep(GL,(C)). We'll need also a somewhat trickier filtration.
Define a partial order < on weights, by p < Aif u — A is a sum of negative roots. Equiva-
lently, 3. w = 3, A;, but each partial sum 3 ¥ | ; is bounded above by the correspond-
ing partial sum of A;.

For each dominant weight A, let Ry be the subspace of Rep(GL,,(C)) spanned by the set
of [V,], for up <A

Lemma. R)\Ru Q R?\—HL-

Proof. This follows from a very lame version of the Steinberg multiplicity formula, lame
enough that we construct it from scratch here.

Let [V, [V,/] be two basis elements of Ry, R, (i.e. irreps with A’ < A, u/ < p). Then V.
is strongly dominated by A’. In particular, every weight in V). is < A’. Similarly p'.

From there, we get that every weight of Vy:@Vris <A+ .

Now when we break up that weight diagram by stripping off irreducibles, we only use
irreps whose high weights are < A + p. These are the basis vectors in Ry4,.. O

Theorem. The ring Rep(GL,(C)) = Zlay, ay, ... , an, a;,'], where a = [ALt*(CM)].

Proof. Certainly we have a map ¢ from the second to the first, taking ay to [ALt*(CM)].
To get a representation strongly dominated by A, use ¢(a}’ *2a)> ™ ... al™' " alr). We
already determined a while ago that any list of representations X, indexed and strongly

dominated by dominant weights A gives a basis. So this shows ¢ is onto.

Note also that ¢(a)' ™2 a)>™ ... aﬁ“:]‘_x“ alr) € Qy i,

If it's not injective, then there’s some polynomial P(ay,. .., an, a;') such that ¢(P) = 0.
Writing P = ) P, by grouping the different monomials in P by the Q. they go into, we
see that each ¢(P,,) must be zero separately. So we may as well assume that P = P, for
some fixed m.

Let c[]; al* be a monomial in P with largest p;, then largest p, (among those with
largest p1), and so on. Define Aby A; = 3 ., my. It follows that for each monomial m in
P, (m) € Ry. -



But in fact, for each monomial m in P other than c[[; af*, ¢é(m) € Rx/ for some A’
strictly < A. Therefore the image of ¢(P)in Ry/ }_,,_, Ry is nonzero, contradiction. [

So this ring is rather boring as just a ring. What's interesting about it is the canonical
basis (of irreps), and the product structure on that basis (rewriting a product as the sum
of basis elements).

2. THE HIVE RING (ASSUMING IT’S ASSOCIATIVE)

Define a (nonassociative?) ring H, with a basis {b,} indexed by GL,(C)’s dominant
weights, and the multiplicative structure

bab, = Z H#HTVE)y- bs.

v

The right way to think about this set of hives is that the differences on the NW side are A,
on the NE side are p, and on the S side are v, all read left to right.

The most technical thing we will have to prove is

Theorem. The hive ring H,, is actually associative.

We'll prove this in the next section. The goal now is to show that the correspondence
by — [Vl gives a ring isomorphism H, = Rep(GL,(C)), and therefore that counting hives
computes tensor product multiplicities.

Define R, as we did for Rep(GL,(C)). We prove that it gives a filtration of this ring too:

Lemma. Ry\R, C Ry,.. Also, byby, contains by, with coefficient 1.

Proof. Consider hives with labels (the partial sums of) A on the NW, pon the NE, and v on
the S, all read left-to-right. Then } .vi =) ;A; + ), w; automatically. We want to show
that v < A+ pin the partial order on weights, and that equality is only the easy part of it.

We first mention a sublemma: given any lattice parallelogram in a hive, with the edges
oriented in coordinate directions (of which there are three, not two), the sum of the terms
at the obtuse vertices beats the sum of the terms at the acute vertices. Proof: the par-
allelogram breaks up into a sum of rhombi. Adding up the rhombus inequalities, all
dependence on the internal numbers cancels and only the corners remain.

Now consider such parallelograms with one acute vertex at the very top, and the other
at the ith point along the bottom. then this parallelogram inequality says that

i i i
D vi<) M+
k=1 k=1 k=1

This is the hard half of establishing v < A 4 .
So the only terms in byb,, are b, with v < A4 . This shows the containment presented.

For the second statement, make a hive by setting each entry equal to the sum of the
obtuse vertices, minus the top vertex ) A, of the parallelogram connecting that entry to
the top entry. This is easily checked to be a hive.

To see that it’s the only one with bottom A + p, write the parallelogram inequalities that
bounded the bottom entries as the sum of two smaller parallelogram inequalities. For the
whole inequality to be pressed, the individual ones must be pressed. O
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Theorem. The hiveringH, =Zlai,. .., an, a;'l, wherea; =b, 10,0, a0 =1 1. 1)

Proof. This is essentially the same proof as in the Rep(GL,(C)) case. If some polynomial
dies, look at its leading term, and show that that doesn’t die in some Ry/ »_,,_, R/, con-
tradiction. O

The Pieri rule says that

Va® AltH(CY) = > Vi

i a weight of Alt"
A + p dominant

It is easy to prove from the Steinberg tensor product rule (homework problem).

Lemma. The product by\b1 10, o in the hive ring also decomposes d la Pieri.
Proof. Also a homework problem. O

From these facts and associativity, we get the full result:

Theorem. The linear isomorphism ¢ : H, =Rep(GL,(C)), taking each by to [V)l, is a ring
isomorphism.

Proof. We want to show that ¢(yx) = d(y)d(x). By linearity, it’s enough to show it for y
a basis element b,.

The Pieri rule being true in both rings then tells us that this equation does hold if x is a
generator, b1, 10,..,0) OF b11,. ).

More generally, let x = b, b,, ... b, be a product of 1 generators. Then
d)(bA(beHz . -bm)) = d)((bAbeHz . 'bHL71 )bm) = d)(bAbeHz s bmq )d)(bm)
and induction on 1 takes care of the rest.

Then the statement that these are generators is exactly that H,, is linearly spanned by
monomials in the generators. So ¢(byx) = ¢(by)d(x) for any A and x, and we're done. [

3. THE HIVE RING IS INDEED ASSOCIATIVE

First off, what’s the equation we're trying to prove? Let hy, be the number of hives
with A, pacross the top two sides, o across the bottom, all read left-to-right. Then

(baby) Z h.beby => ) h{hZ b,
(byby) =) bahf,b. = Z Zh JhZ b,

Extracting coefficents of b,, we get

> PGy =) hhg

Consider a tetrahedron balanced perfectly on an edge, from above; the boundary of
what you see is a square. Label the edges of this square (starting from one of the lower
two vertices and going clockwise) with the partial sums of A, u, v, 7*. If the bottom edge

whereas
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is labeled o, then the number of ways of labeling the lower two faces with hives is hf h7, .
Without fixing the labeling, it’s 3 hg h7, . The corresponding statement for the top two
faces gives the other sum.

Proposition. There is a (piecewise linear) bijection between ways of labeling the upper two faces
of this tetrahedron with a pair of hives and ways of labeling the lower two faces, with given fixed
labels A, w,v, e* around the four non-horizontal edges.

This proof was found by Chris Woodward, in the context of honeycombs.

Proof. This tetrahedron of size n breaks up into little tetrahedra, little upside-down tetra-
hedra, and octahedra (think about the n = 2 case). We will excavate it from the top,
helicoptering out pieces only when everything above them is already out of the way.

Whenever we remove a little tetrahedron, we don’t expose any new lattice points.
Whenever we remove an octahedron, though, one of the old vertices (a local max) goes
with it and a new one becomes visible (a local min). As we go, we label the vertices
exposed according to the following formula:

e :=max(a+c,b+d)—e
where e was the label at the top, and a, b, ¢, d the labels around the equatorial square.

When we’re done, we have labeled the bottom two faces. The process obviously pro-
vides its own inverse.

It remains to see that what we get on the bottom is a pair of hives, i.e. satisfies the
rhombus inequalities. We claim that every unit rhombus in the tetrahedron gives a true
rhombus inequality.

Say we’ve partially excavated, and every rhombus above the level so far dug has satis-
tied this inequality. Now we extract a piece; this exposes some new rhombi that we need
to check.

The n = 2 case. We remove the top two tetrahedra, then the octahedron, then a bottom
tetrahedron. From the top, we see the labels

f b f b f b f b

a e |C a e |C al eNc a e\

g d g d g d g d
The second move exposes the rhombus with obtuse vertices a, b, acute f, e’ = max(a +

¢, b+ d) — e. We want to show that

a+b>f+max(a+c,b+d)—e

or equivalently
a+b>f+a+c—e,a+b>f+b+d—e
which follow from the b+ e > f 4+ ¢, a+ e > d + f inequalities on the top.
The third move exposes the rhombus with obtuse vertices a, e’, acute b, g. We want to

show that
a+max(a+c,b+d)—e>b+g
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so it’s enough to show one of them: a+b+d—e > b+ g. This follows froma+d > e+g
on the top.

The general case. Any rhombus exposed fits into a size 2 tetrahedron, so we just have to
apply the n = 2 case over and over. O

Here’s an example, computing the tensor square of the (2, 1, 0) representation of GL3(C).

121 111 1
11 11 2662 1221 1111 11 11 11
121 121 — 161061 — 12321+ 111+111 +121+121 + 1
11 11 26 1111 11 11

P o A A

(42.0) (411D (330 (321 (3.21) (22.2)

Note that this representation restricts to the adjoint representation of SL;(C). The
bracket on that Lie algebra sl3 gives an equivariant map from Alt?sl; to sl3, which is why
we're not surprised to find a copy of the adjoint rep inside its tensor square. (In fact we
tind two.) The trivial rep is in there because of the invariant form (X, Y) — Tr (XY) on sl;.

high weights = (2,1,0)



