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1. THE DEFINITION, AND THE UNIVERSAL PROPERTY

Given a vector space V, define the tensor algebra TV by

TV := @ Ven,
neN

This has an obvious structure of an associative graded algebra.

It also has a simple universal property: if A is an associative algebra,and ¢ : V — A
is a linear map, then there exists a unique extension to an algebra map ¢ : TV — A. Put
another way, the functor T from Vec to Alg is left adjoint to the forgetful functor. The
example we saw of such a construction last term was the “group algebra” of a group,
which was left adjoint to the “group of units” functor from Alg to Grp.

There’s also a forgetful functor from Alg to Lie, taking an associative algebra to the Lie
algebra whose bracket is defined by [X, Y] := XY — YX.

We now determine its left adjoint. Let g be any old Lie algebra (over any old field), and
A an associative algebra. Given a merely linear map from g to the vector space underlying
A, we get an associative algebra map Tg — A. If we can do better and give a Lie map from
g to the Lie algebra associated to A, then this map Tg — A must include all

XQY -YX—-[X,Y], Xeg
in its kernel.

So define the universal enveloping algebra Ug of g as the quotient of the tensor algebra
Tg by the ideal generated by these relations. This has the desired property: any Lie map
g — A extends uniquely to an associative map Ug — A.

In particular, every representation of g (such as the differenital of a representation of &)
gives a module over the algebra Ug.

2. THE POINCARE-BIRKHOFF-WITT THEOREM

Since the relations XY — YX — [X, Y] mix degree 2 terms in Tg with degree 1 terms, the
quotient algebra Ug isn’t graded — it’s only filtered: if (Ug), is defined as the image of
@igng@ﬁr then (ug)m(ug)n S (ug)m+n-

Therefore the associated graded space @, (Ug)./(Ug)n_1 possesses a well-defined graded
algebra structure. There is a naive guess as to what this graded algebra is: just replace
each of the filtered relations XY — YX — [X| Y] by its top degree part, XY — YX. That is the
symmetric algebra Sym(g) = Tg/({XY — YX]x veg)-
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One can push this far enough to show that there is a well-defined map from Sym(g)
onto the associated graded of Ug.

Theorem (Poincaré-Birkhoff-Witt). This map Sym(g) —» Ug is an isomorphism.

We only sketch the proof. If the theorem were true, we’d know how to think of the
vector space Sym(g) as a module over Ug. Then we could restrict it to a Lie representation
of g. It's actually easy to write down this action, and check that it’s well-defined for g.
Then by the universal property, it extends to an action of Ug. This turns out to give the
map backwards from Ug to Sym(g). QED.

Grobner basis fanatics will note that the original set of relations is a noncommutative
Grobner basis (which also proves PBW).

3. THE QUASI-CLASSICAL LIMIT

Instead of imposing XY —YX = [X, Y], introduce a new variable h, and impose XY —YX =
R[X, Y]. So the quotient, as a vector space, is Ug[h]. The PBW theorem says we get a family
of algebra structures, on the same vector space, as we take h actually equal to a parameter
and let it vary.

Exercise. Show that setting h to a number gives us Ug, so long as the number isn’t zero.

If we let h? = 0 (but not h = 0), then any product of elements in Ug has two terms:

pd=p-qd+hip,q}
where the p - q is the commutative product from Sym(g).
Exercise. Show that {p, q}

e is antisymmetric;
e satisfies the Jacobi identity (so it is a Lie bracket);
e satisfies the Leibniz rule {p, qr} = {p, q}r + q{p, 7}

This is called a Poisson bracket on Sym(g). Geometrically, it corresponds to a 2-tensor
on g* = SpecSym(g).

Since it is a 2-tensor, we can contract it with cotangent vectors and get vectors. One can
show that the image in the tangent space to A € g* is the tangent space to the coadjoint
orbit through A, and indeed the tensor is the “inverse” to the symplectic form we defined
on coadjoint orbits!

4. VERMA MODULES

We bring up another couple of adjoint functors. Given a subring R of S (or more gener-
ally, a ring homomorphism, but let’s stick with subring), we can restrict the action of S on
an S-module to an R-action, giving a forgetful functor from S-Mod to R-Mod.

This functor has a left adjoint called extension of scalars, taking an R-module A to the
S-module S®rA. (Note: this doesn’t require commutativity, since S is an R-bimodule.)

If we’d been more into rep theory of finite groups, we would have used this to extend
arep V of a finite group H to one of an overgroup G, making C[G]®¢jy V. The dimension
goes up by the factor |G|/|H|. This is mostly why we’ve avoided it for Lie groups, because
we’ve avoided infinite-dimensional representations.

2



But now’s the time for them to appear. Let B is a Borel subgroup of a complex Lie group
G, so b a Borel subalgebra of g, and A € t* a weight. Then let C, be the one-dimensional
representation of b, and define

Verm;\ = Ug®Ub C)\ .

This gives a module for Ug, and therefore a Lie representation of g; it does not give a rep-
resentation for G. We’re used to the idea “if G’s simply connected, then by exponentiation
we can just extend an algebra map to a group map”, but that requires that the exponential
map converge, and in these infinite-dimensional cases it doesn't.

These Verma modules satisfy a universal property. Let Rep) denote the category of
g-modules equipped with a chosen high weight vector of weight A. Then Verm, is the
initial object; it has a unique map to any module in this category, taking its high weight
vector to theirs.

5. THE CENTER OF THE UNIVERSAL ENVELOPING ALGEBRA

In this one we assume G is the complexification of a compact group, and in particular
that g=g* as G-reps.
If we note that the degeneration of Ug to Sym(g) is G-equivariant, we can follow the
G-invariant subspace:
Z(Ug) = (Ug)® Sym(g)®
The latter is G-invariant polynomials on g* — or let us say g — which are determined by

their restriction to t, giving a map Sym(g)€ < Fun(t)W.

Exercise. Show the first equality above.

Example. If G = GL,(C), then we're looking at conjugation-invariant functions of a
complex matrix. Since the diagonalizable matrices are dense, it suffices to look at S-
invariant functions of the diagonal entries. We know these: they’re “symmetric polyno-
mials”, or equivalently, they’re polynomials in the elementary symmetric polynomials in
the eigenvalues.

In particular, in this case Fun(t) =Cleq, ez, ... , e,] where e; is of degree i. This com-
mutative ring is in fact a polynomial ring!

In fact the ring Z(Ug) is always isomorphic to Fun(t)"; there is an explicit isomorphism
called the “Harish-Chandra homomorphism”, whose details will not concern us.

6. THE DEGREES AND EXPONENTS OF A WEYL GROUP, AND COXETER ELEMENTS

Theorem (Chevalley). Let V be a vector space with a nondegenerate symmetric form, and W
a finite subgroup of O(V) generated by reflections. Then Fun(V)W is a polynomial ring. In
particular, the degrees of its generators (as a graded ring) are well-defined.

These degrees {d;} are called the exponents of the group W, and have a million inter-
esting properties (our reference is Humphreys’ Reflection groups and Coxeter groups).

Proposition. e The product of the degrees is |W/|.
o The sum of the degrees is the rank of G plus the number of reflections in W.
e The Poincaré polynomial of G/B is [ ],(1 — q*%)/(1 — g?).
e The cohomology ring H*(BG) is a polynomial ring, with generators in degrees {2d;}.
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o The cohomology ring H*(G) is an exterior algebra, with generators in degrees {2d; — 1}.

Exercise. Check these for U(2), and the first three for U(n).

Subtracting one from each d; we get the exponents {e; = d; — 1} of the Weyl group.
(Don’t be fooled: these do appear often enough to deserve their own name.) To really
appreciate them, we first need to introduce Coxeter elements, as follows.

Start by multiplying all the simple reflections in W together exactly once. In S,, one gets
n-cycles this way.

Exercise. Use the fact that Dynkin diagrams are trees to 2-color them “black” and
“white”. Then one particularly nice way to get a Coxeter element is to multiply all the
black reflections together first, and then all the white ones. Show that the answer is well-
defined, except for the Z, choice of which group is black and which is white. Can one use
the affine diagram to break the black/white symmetry?

Exercise. Use the fact that Dynkin diagrams are trees to show that the conjugacy class of
a Coxeter element is always well-defined. Hint: use induction, and the fact that moving
an element from one end of a word to the other is a conjugation.

In particular, one can ask for the eigenvalues of the Coxeter element acting on t. Since
it’s a finite-order element (with order the Coxeter number h), the eigenvalues are hth
roots of unity.

Proposition. e The eigenvalues of the Coxeter are exp(2mie/h), as e varies over the expo-
nents. (Hence the name.)
o If1 <e<hand (e, h) =1, then e is an exponent.
o The Coxeter number h is |A| divided by dim tgs (from the commutator subgroup of G).
o If we make a partition whose rows have length the exponents, then the height of the ith
column is the number of positive roots of height i.

Example. Let G = Eg. Then by playing the find-the-highest-root game, we can deter-
mine |A] = 240. So h = 30. Then we get seven es 1,7,11,13,17,19,23,29, and we're
done!

Exercise. Express in these terms the height of the highest root.
Exercise. Check all these statements for SU(n).



