WEYL GROUPS AND WEYL CHAMBERS
NOTES FOR MATH 261, SPRING 2002

ALLEN KNUTSON

Let K be a compact connected group, T a maximal torus, W := N(T)/T the Weyl group,
A the root system, and A the weight lattice of T. Then W acts on T, t, and A. If we pick a
K-invariant inner product on t, it induces a W-invariant one on all these other spaces.

Recall that a positive system A, C A is the intersection of A with a half-space in t*,
such that the boundary hyperplane contains no roots. If we twist the half-space by a
Weyl group element, we get another positive system.

We already know some good elements of W; for any root 3 € A, we have the reflection
Tp negating B, and preserving the hyperplane +. If § is a simple root, we call 5 a simple
reflection.

Lemma. Let & € Ay be a simple root. The difference between Ay and vy A, is just that the first
contains « and the second contains —o.

Proof. Recall first that every root is either a positive sum of simple roots, or a negative
sum, and not both (since they’re linearly independent).

If B € A; is not «, then it is not a multiple of «, and therefore contains some other
simple root with a positive coefficient. When we reflect using 74, it doesn’t change that
positive coefficient. Therefore the root stays positive. So the only root that goes negative
is &, to —«. O

Proposition. The Weyl group acts transitively on the space of positive systems. Actually, this is
already true of the subgroup generated by simple reflections. (This subgroup will be proven later
to be the whole group.)

Proof. Let P be a positive system, which we want to bring to A;. If P contains all of the

simple roots Ay, then P D A, so P = A,. Contrapositively, if P # A,, there exists some
p % Yy

simple root o such that —x € P.

We claim that Ay N (1 - P) is strictly larger than A, N P, since
A+ N (rtx : P) =T« - ((ra : A—!—) N P) =T« - ((A+ \{“}U{_(X}) N P)
=Ta (AL NP)U{—0a}) = (14 - (AL NP)) U{ax}

This last union is disjoint, since & Z T,A..

So we can move P using simple reflections to increase its intersection with A, so by
induction we can move it all the way to A;. Therefore the subgroup generated by reflec-
tions acts transitively on the set of positive systems. O

In particular there exists an element wy, € W, called the long word in the Weyl group,
with the property wo - Ay = A_. In GL,(C)’s Weyl group S, thiswasn,n—1,...,3,2,1.
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Warning: we will casually use wy to denote an element of G in what follows. This isn’t
fair, because it really lives in N(T)/T, with no canonical lift in N(T). So it’s up to you to
check that each place we use it (such as to speak of “wyB € G/B”) the choice of lift is
immaterial.

Lemma. The N-orbit through the point woB € G/B is free (n — nwoB is an injection), and
open dense.

Its image in G/B is called the big cell, “cell” in the topological sense since N is a vector
space.

Proof. The group N_ := exp(3_, gg) = WwoNw, ', generated by the negative root spaces,
does not intersect B. Proof: we already know that N_ injects under the adjoint represen-
tation, and N_ maps to lower unipotent matrices whereas B maps to upper triangulars.

This shows the injectivity of n — nwgB, because if nwyB = wB, then w, "nw, € B, so
it'sin N_NB={1}.

For the openness, then, we only need know that dim N = dim G/B, which is obvious on
the Lie algebra level (since g = b @& n_).

For the density, note that N is complex and is acting holomorphically on G/B, so each
orbit-type stratum is complex, so even real dimensional. Hence ripping out the lower-
dimensional strata does not disconnect G/B. (Of course, we need G/B connected to begin
with, i.e. G connected.) [

Theorem. The Weyl group acts simply transitively on the set of positive systems. Also, the Weyl
group is generated by reflections.

Proof. We first show that the N-orbit NwyB contains no other wB, w € W; in particular
NwyB # NwB for any other w € W. This is because the map n — G/B, X — exp(X)wyB is
T-equivariant and injective, so the only T-fixed point in the image comes from the unique
T-fixed point in n, namely 0. And we already knew the T-fixed points on G/B, because
we'd figured them out on K/T.

To show the freeness of W’s action on the set of positive systems, we just need to show
that there exists a positive system I' with a property such that w - I' does not have that
property for any w # 1. The property we use is “having a dense N-orbit”, and the I" we
use is A = wy - A;. Since G/B is connected (see comment following proof), it can’t have
two open dense orbits. And we just showed above that the orbit NwB isn’t NwB unless
W = Wy.

Therefore there’s at most one Weyl group element taking any positive system to any
other. But we already showed that there is a Weyl group element, generated by reflections,

taking one to any other. Therefore there is exactly one, and it’s generated by reflections.
U

It seems a shame to go to such a noncombinatorial proof, but it’s necessary; the state-
ment can be false if G isn’t connected.

Exercise. Let Z; act on SU(3) by M — M*. Show that the theorem fails for the semidirect
product Z, >a SU(3).

Exercise. Use the theorem to show that for any subgroup P > B, the dimensions can’t
agree.



1. WEYL CHAMBERS

Given a positive system I' C A, define the open Weyl chamber as the set of X € t
such that X - I" € R,.. This is actually an open polyhedral cone, isomorphic to R, whose
walls come from the hyperplanes perpendicular to the simple roots. (Having positive dot
product with the simple roots is enough to guarantee positive dot product with all the
positive roots.)

Plainly two positive systems have disjoint Weyl chambers, and almost every element
of tis in a Weyl chamber. The only way to go wrong is to be in one of the hyperplanes
perpendicular to a root.

Put another way, one can start with t, rip out all the hyperplanes a*, and the compo-
nents of the complement are the Weyl chambers.

Theorem. W acts simply transitively on the set of open Weyl chambers. If we pick a particu-
lar one, the “positive Weyl chamber” t,, and take its closure, then every element of t is W-
conjugate to a unique element of t,.

For this reason “Weyl chamber” usually means the closed chamber.

Note that we can perform this same decomposition on t*, without using an inner prod-
uct — for each reflection 14, rip out the hyperplane perpendicular to &, pick one of the
resulting components, and call its closure the positive Weyl chamber in t*. This is where
we mostly want them, of course, since this is where weights of T live. We now give a
correspondence between positive systems (which are subsets of t*) and Weyl chambers in
t*, without choosing an identification of t and t*.!

Define the Weyl vector p as 1 3~ A, &, one-half the sum of the positive roots. The Tis
desirable, because of the following equation (a consequence of the first lemma):
Ta P =p—Q
Exercise. What is this p in the GL,,(C) case? And in what context did we see it (perhaps

with a constant added)?

Lemma. The Weyl vector p has no W-stabilizer.

Proof. Let X € t have positive pairing with each simple root (and therefore all positive
roots). Let w € W be some nonidentity element of the Weyl group. Let D = A, N (w-A,).
Then A4 \ D consists only of positive roots (and is nonempty), and (w - A, ) \ D consists
only of negative roots (and is nonempty).

Now we claim that (X, p) is strictly more than (X, w - p), since the difference is one-half
Y Xa— > (Xa)>0
AL\D (w-AL)\D
and in particular, p #w - p. O

Proposition. There is a canonical correspondence between positive systems of roots and Weyl
chambers in t*.

1This is usually blithely skipped over by using the Killing form to define an inner product on ¢, and
then restrict to t. Unfortunately, the Killing form can be degenerate (e.g. if K = T), so it’s better to have a
construction like the one here, that doesn’t use it.



Proof. Since p has no stabilizer, it does not lie on any of the root hyperplanes, and therefore
lies in a unique Weyl chamber. This gives a way of associating a Weyl chamber in t* to a
positive system. O

Culture: there are some infinite-dimensional Lie groups with finitely many simple roots
but infinitely many positive roots. In this case the infinite sum in our definition of the
Weyl vector doesn’t make sense. It is still useful to define one, but it has to be character-
izedbyry-p=p— .



