MATH 2230, FALL 2014

HOMEWORK #2, DUE THURSDAY SEP 11 AT BEGINNING OF CLASS

Exercises from the book [Hubbard and Hubbard, 4th edition]:

• 1.2.1b, 8, 13, 16, 17

1. Let M be a "strictly upper triangular" $n \times n$ matrix, meaning, if $M_{ij} \neq 0$ then i < j.

a. Show that the first d diagonals above the middle of M^d vanish, i.e. $(M^d)_{ij} \neq 0$ implies $i + d \leq j$, for each d > 0.

b. Show that $M^n = 0$.

c. Use the infinite series $\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - ...$ to guess a *finite* formula for the inverse matrix to I + M, where I is the n × n identity. Prove that your guess is indeed an inverse to I + M (i.e. on both sides).

2. Let M be a strictly upper triangular $n \times n$ matrix, with only entries 0, 1, and such that $M_{ij} = M_{jk} = 1$ implies $M_{ik} = 1$, for all numbers i < j < k in [1, n]. This is a way to picture a hierarchy like we did in class, where employee j reports to employee i if $M_{ij} = 1$ (and not 0).

a. Let \vec{v} be a vector. Interpret the entries of $(I + M)\vec{v}$ in English.

b. Show that I + M is invertible, and interpret its entries in English.