HW # 3 DUE THURSDAY, SEPTEMBER 21

ALLEN KNUTSON

Recall for $X \subseteq \mathbb{C}^n$, blown up along $X \cap \mathbb{C}^{n-j}$, the blowup \widetilde{X} lives in $\mathbb{C}^k \times \widetilde{\mathbb{C}}^j$, which naturally maps back down to X. Define the **exceptional divisor** as the preimage in \widetilde{X} of the \mathbb{C}^{n-j} we blew up. (We'll define "divisors" later.)

#1. Let $X = V(\langle x(y-1), y(y-1) \rangle)$. Compute the proper transform of X, when blowing up the plane at the origin. What are the prime components of X and \widetilde{X} ?

#2. Let $X = V(\langle x_1x_3 - x_2^2 \rangle)$. Compute the proper transform of X, when blowing up 3-space along the x_3 -axis. What are the prime components of X and \widetilde{X} ?

#3. Try it out in Macaulay 2. In particular, convince yourself that the following code is doing the job.

n = 3; j = 2; -- blow up n-space along $x_1 = \ldots = x_j = 0$ R = QQ[x_1..x_n, y_1..y_j]; Bl = ideal exteriorPower(2, matrix {apply(j,i->x_(i+1)),apply(j,i->y_(i+1))}); irr = ideal apply(j,i->x_(i+1)); -- irrelevant ideal IX = ideal {x_1*x_3 - x_2^2}; -- ideal of X BX = saturate(I + Bl, irr); -- ideal of the blowup E = irr + BX; -- ideal of the exceptional divisor decompose E

With this doing the algebraic work for you, what are the prime components of the exceptional divisor? Describe them geometrically.

#4. If $S \ge J$ are a ring and ideal, define the **blowup algebra** $B(S, J) := \bigoplus_{n \in \mathbb{N}} t^n J^n \le S[t^{(1)}]$, where S is put in degree 0 and t in degree 1. Compute Projm B(S, J) when J = 0. #5. Compute Projm B(S, J) when $S = \mathbb{C}[x, y]$ and $J = \langle x, y \rangle$.

Date: September 16, 2017.