
MATH 3360 PRELIM #2, SPRING 2018, WITH ANSWERS

If two questions have the same number, they concern the same object. For example,
the ring in 2b is the one defined in 2. [5π] indicates that a problem is worth 5π points.

1 [15]. Let a, b ∈ Fp and consider the polynomial f(x) = x2p + ax+ b ∈ Fp[x].
Assume E ≥ Fp is a field big enough that f(x) factors into linear factors in E[x].
How many distinct roots does f(x) have (in E)?
Answer. We had a way to find the repeated roots: look at the GCD of fwith its derivative,
2px2n−1 + a = a (notice p = 0). If a 6= 0, then this GCD is the unit a, so there are no
repeated roots – the answer is 2p distinct roots.
Now assume a = 0, and let y be a root, i.e. y2p = −b. Then

x2p + b = x2p − y2p = (x2 − y2)p by the Freshman’s Dream

so the only roots are those of x2 − y2, namely ±y.
How many roots is that? If p = 2, then y = −y, so the polynomial has only one root.
Otherwise it has two.

2. Let R be a commutative ring. We’ll want to define frac(R) as the equivalence classes of
a certain equivalence relation on F := {(n, d) ∈ R2 : d is neither 0 nor a zero divisor} :

(n1, d1) ∼ (n2, d2) ⇐⇒ n1d2 = n2d1

2a [20]. Prove that this is indeed an equivalence relation on F.
Answer.
Reflexivity and symmetry are both really obvious: the first says nd = nd, the second says
n1d2 = n2d1 ⇐⇒ n2d1 = n1d2.
What’s left is transitivity.

(n1, d1) ∼ (n2, d2) ∼ (n3, d3) =⇒ n1d2 = n2d1, n2d3 = n3d2.

Hence (n1d2)d3 = (n2d1)d3 = d1(n2d3) = d1(n3d2). Since d2 is not a zero divisor, n1d3 =
d1n3.

2b [15]. With more work, one could show that there’s a natural ring structure on frac(R).
But don’t bother.
Consider the function (which, you may assume, is actually a ring homomorphism)

R→ frac(R), r 7→ equivalence class of (r, 1).

If R is finite, prove this is an isomorphism.
Answer. First, we check if it’s 1 : 1. If (r, 1) ∼ (s, 1), then r1 = s1 so r = s; yes it’s 1 : 1 (this
doesn’t depend on the finiteness).
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For onto: say we have the equivalence class of (n, d), and we want to find some rmapping
to it, i.e. (r, 1) ∼ (n, d), also known as rd = n. This means, evidently, that we want to
divide by d.
Consider the multiplication map d· : R → R. Since d is not a zero divisor, it’s 1 : 1. Since
R is finite, this 1 : 1 self-map is onto. So it hits n, i.e. ∃rwith dr = n.

2c [5]. Give an example of an R for which R→ frac(R) is not an isomorphism.
Answer. We need an infinite ring R that isn’t a field. Z will do; frac(Z) ∼= Q and the map
Z → Q isn’t an isomorphism.

3 [20]. Let n = 25 · 5 · 174.
List all pairs (a, b) ∈ N2 such that Zn ∼= Za × Zb, and prove your list is complete.
Answer. By CRT, we need gcd(a, b) = 1. So for each of the primes 2, 5, 17 in n, all of them
are in a, or all are in b. That gives 23 possibilities:

(25·5·174, 1), (25·5, 174), (25·174, 5), (25, 5·174), (5·174, 25), (5, 25·174), (174, 25·5), (1, 25·5·174)

4. Fun fact! The group Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} has five different subgroups:

Z2 × Z2 of size 4
/ | \

{(0, 0), (1, 0)} {(0, 0), (1, 1)} {(0, 0), (0, 1)} each of size 2, but different subsets
\ | /

{(0, 0)} of size 1

Now let’s have the actual question.
Let p, q ∈ N be prime numbers.
4a [10]. How many different sizes of subgroups does Zp × Zq have?
Answer.
By Lagrange’s theorem, the only options are the divisors of #(Zp × Zq) = pq. If p 6= q,
those are 1, p, q, pq, and all actually arise (from {(0, 0)}, {(a, 0) : a ∈ Zp}, {(0, b) : b ∈ Zq},
Zp × Zq). So four sizes, in that case.
If p = q, then the only divisors are 1, p = q, p2, so three sizes.
4b [15]. How many different subgroups does Zp × Zq have?
Answer.
If p 6= q, then CRT applies, so Zp×Zq ∼= Zpq. The only subgroup of that group of size p is
the multiples of q, and vice versa. So there are only four subgroups, one of each possible
size.
If p = q as in the fun fact, it’s trickier to count the subgroups. Every element g of Zp × Zp
other than (0, 0) is of order p, so generates a (cyclic) subgroup of size p. Inside that
group {(0, 0), g, 2g, . . . , (p − 1)g} ∼= Zp, every element except (0, 0) is a generator of that
subgroup. So there are p − 1 elements of Zp × Zp generating the same subgroup. This
gives (p2−1)/(p−1) = p+1many subgroups, where p2−1was the number of non-(0, 0)
possible g.


