
MATH 2240 FINAL, SPRING 2019

Name, written slowly and legibly:
In each answer, write as much (on front and back) as it takes to convey your thought

process; full English sentences are much easier to give credit to than bare, unmotivated
scribbled formulæ. (They won’t do any good if they can’t be read, so do put effort into
making them legible.)

Feel free to ask me questions during the test, especially if you need a little reminder
about a definition. Worst case is I don’t answer. (It’s very sad to afterward hear “I didn’t
realize I could ask you that” — find out!)

In general the letters in part 5b refer to those introduced in 5, 5a, etc.

1. Consider the 2-form

α =
x dy∧ dz+ y dz∧ dx+ z dx∧ dy

(x2 + y2 + z2)3/2

on R3 \ ~0.
1a [10]. Compute dα.
Answer. Let’s start with d of the first term:

d

(
x

(x2 + y2 + z2)3/2
dy∧ dz

)
=
∂

∂x

x

(x2 + y2 + z2)3/2
dx∧ dy∧ dz

since the ∂
∂y

term has a dy which dies when ∧d with the dy ∧ dz, likewise the ∂
∂z

term.
Continuing,

=
(x2 + y2 + z2)3/2 − x(3/2)(2x)(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
dx∧ dy∧ dz

= (x2 + y2 + z2)1/2
(x2 + y2 + z2) − 3x2

(x2 + y2 + z2)3
dx∧ dy∧ dz

Now add the three cyclic rotations of this term, rotating x → y → z → x. The only parts
that change are the −3x2 to −3y2 and −3z2, and the dx∧ dy∧ dz to

dy∧ dz∧ dx = dz∧ dx∧ dy = dx∧ dy∧ dz

i.e. that factor doesn’t change! Adding these three up, we get

(x2 + y2 + z2)1/2
3(x2 + y2 + z2) − 3x2 − 3y2 − 3z2

(x2 + y2 + z2)3
dx∧ dy∧ dz = 0

(This α is actually the 3-d analogue of the dθwe thought about before.)

1b [10]
Let ∆ = {(x, y, z) : x, y, z ≥ 0, x + y + z = 1} be the standard triangle in the first octant.
Set up the computation of

∫
∆
α, by pulling back along some parametrization Ψ of ∆.
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Let’s take Ψ(x, y) := (x, y, 1− x− y), x, y ≥ 0, x+ y ≤ 1, i.e. z = 1− x− y, dz = −dx−dy.
Then

Ψ∗α(x, y) =
x dy∧ (−dx− dy) + y (−dx− dy)∧ dx+ (1− x− y) dx∧ dy

(x2 + y2 + (1− x− y)2)3/2

=
x+ y+ (1− x− y)

(x2 + y2 + (1− x− y)2)3/2
dx∧ dy =

1

(x2 + y2 + (1− x− y)2)3/2
dx∧ dy

=
1

(x2 + y2 + (1− x− y)2)3/2
dx∧ dy

so the integral is∫ 1
y=0

∫ 1−y
x=0

1

(x2 + y2 + (1− x− y)2)3/2
dx∧dy =

∫ 1
y=0

∫ 1−y
x=0

1

(2x2 + 2xy+ 2y2 − 2x− 2y+ 1)3/2
dx∧dy

1c [5]. Actually do the integral you just set up.
Answer. Nobody did!

2 [5]. Let α ∈ A2(R8). For β a form, let F(β) = dα∧ β.
Do the operations F and d commute, i.e. you can go either way around the square

Ak(R8) d−→ Ak+1(R8)↓ F ↓ F
Ak+3(R8) d−→ Ak+4(R8)

and you get the same answer?
Answer.

d(F(β)) = d(dα∧ β) = (ddα)∧ β+ (−1)3dα∧ dβ = −dα∧ dβ

the second by Leibniz’ rule, since dα is a 3-form, the third since d2 = 0. Whereas F(dβ) =
dα∧ dβ. So no, these operations usually anticommute (unless dα∧ dβ = 0).
Many people put a (−1)2 since α is a 2-form. But we weren’t trying to pull d past α, rather,
past dα.

3 [10]. Let τ :
{
(r, θ) : r ∈ [0, 1], θ ∈ [0, 3

4
π]
} → R2 take (r, θ) 7→ (r cos θ, r sin θ), and let T

be its image, 3/8 of the unit disc. (Draw a picture!)
For f : R2 → R a function, write down

∫
T
f dx∧dy as an iterated integral (i.e. with explicit

bounds of integration) three different ways: over x then y, over y then x, over r then θ.
(Don’t evaluate it, obviously; you don’t know what f is.)
Answer.∫ 1

y=0

∫√1−y2
x=max

(
−
√
1−y2,−y

) f dx dy
∫ 1
x=−1/

√
2

∫√1−x2
y=max(−x,0)

f dy dx

∫ 3
4
π

θ=0

∫ 1
r=0

f r dr dθ

Writing them as a sum of two integrals was fine too. Lots of people did it in either way.

4. Let f : [0, 1] → R be a weakly increasing function, i.e. x ≤ y =⇒ f(x) ≤ f(y). It’s not
assumed continuous though. Extend it to R by f(x) = 0 for x /∈ [0, 1].



4a [5]. State what you’re required to check in order to show that this f is Riemann inte-
grable (i.e. state the definition) – the easy parts and the hard parts.
Answer. Bounded, bounded support, upper limits and lower limitsUN, LN converge to the
same value.
We learned other conditions (that weren’t the definition, but were acceptable anyway) in
class: one about oscillation, the other about being continuous a.e.

4b [10]. Show that f is indeed Riemann integrable.
Answer. On [0, 1], f is bounded by f(0) ≤ f(x) ≤ f(1). So |f| ≤ |f(0)|+ |f(1)| everywhere. Its
support is contained in [0, 1]. (This wouldn’t have worked if we only knew fwas defined
on (0, 1).)
Now let’s compute the Nth upper and lower sums, i.e. in the Nth dyadic paving, with f
taking on values f(i/2N), i = 0, . . . , 2N. Then

UN =
1

2N

2N∑
i=1

f(i) LN =
1

2N

2N−1∑
i=0

f(i)

so UN − LN = 1
2N
(f(1) − f(0))→ 0 as N→∞.

4c [5]. Show that f is continuous almost everywhere.
Answer. Since it’s Riemann integrable, it’s continuous almost everywhere. Ta-da.
A harder question (that I didn’t ask): show that the set of discontinuities is at most count-
able. Well, if f is discontinuous at x, the usual statement is that lima→x f(a) doesn’t exist.
But lima→x,a<x f(a) = supa<x f(a) and lima→x,a>x f(a) = infa>x f(a) each exist by f increas-
ing, so the only issue is that supa<x f(a) < infa>x f(a) at x.
Define Sk := {x ∈ [0, 1] : supa<x f(a) + 1/k < infa>x f(a), i.e. there’s a jump up of > 1/k
at x. I claim that #Sk < k(f(1) − f(0)). Otherwise the jumps around the points in Sk are
already enough to get you from f(0) to higher than f(1).
For x to be a point of discontinuity, supa<x f(a) < infa>x f(a), so the difference is more
than some 1/k; hence the points of discontinuity are

⋃
k Sk, a countable union of finite

sets hence countable.

4d [10]. Give an example of an increasing f that’s discontinuous at every point of (0, 1)∩Q.
Answer. Enumerate those rationals as q1, q2, . . .. Let

f =

∞∑
i=1

1[qi,1)/2
i

This sum converges at any x since the total is at most 1. Also, f has a jump of 2−i at qi, so
is discontinuous there.
There were three ways that people tended to answer this wrong. One was to define a
function like f(x) = x1(0,1)∩Q, which isn’t increasing (and is discontinuous everywhere on
[0, 1], but that’s beside the point).
Another was to use the phrase “the greatest rational number q less than x”. There is never
a greatest rational less than x. There are rationals, very close, none of which is the largest.



The third was to give a circular definition of f, something like

f(x) =

{
x if . . .
f(x− q) + 1/2n if . . .

as if it were an inductive definition. Writing something like this doesn’t let you actually
compute f somewhere.

5. LetM be a square matrix with characteristic polynomial det(t1−M) =
∏n

i=1(t− λi).
5a [5]. What is the characteristic polynomial of −M? Don’t just write down the definition
– your answer should be in terms of the (λi).
Answer. Let’s upper-triangularize M, which doesn’t change its characteristic polynomial.
Now the (λi) are down the diagonal, and it’s easy to calculate det(t1+M) =

∏n
i=1(t+λi).

5b [5]. What is the characteristic polynomial of M2? Don’t just write down the definition
– your answer should be in terms of the (λi).
Answer. Same trick lets us calculate det(t1−M2) =

∏n
i=1(t− λ

2
i ).

6. Assume A,B are two square matrices, and ~v1, . . . ,~vn a basis consisting of eigenvectors
of both matrices.
6a [10]. Show that AB = BA.
Answer. Let ~w be any vector. Expand in the basis, so ~w =

∑n
i=1 ci~vi. Let the eigenvalues

be (αi), (βi) for A,B respectively. (Not the same for the two matrices!) Then

AB~w = AB

n∑
i=1

ci~vi =
n∑
i=1

ciAB~vi =
n∑
i=1

ciAβi~vi =
n∑
i=1

ciβiA~vi =
n∑
i=1

ciβiαi~vi

Meanwhile

BA~w = BA

n∑
i=1

ci~vi =
n∑
i=1

ciBA~vi =
n∑
i=1

ciBαi~vi =
n∑
i=1

ciαiB~vi =
n∑
i=1

ciαiβi~vi

so these are equal.
Some people instead said “let P have columns (~vi), so P−1AP, P−1BP, are diagonal hence
commute. Now

AB = P(P−1AP)(P−1BP)P−1 = P(P−1BP)(P−1AP)P−1 = BA

6b [5]. Give an example of n,A, B such that AB = BA but there doesn’t exist a basis
consisting of eigenvectors of both matrices.

Answer. Let n = 2, A = B =

[
0 1
0 0

]
. Then AB = A2 = BA, but neither matrix has two

linearly independent eigenvectors.
Lots of people were unwilling to let 0 be an eigenvalue, and said things like, “if A =[
1 0
0 0

]
then it only has one eigenvector,

[
1
0

]
. No,

[
0
1

]
is one too.



If A is diagonal – as in many answers – then the standard basis is a basis of eigenvectors.
If B is diagonal too, then yep it’s a basis of eigenvectors for both of them.
In fact, if A,B are both diagonalizable and commute, then (theorem) there exists a basis of
eigenvectors. This question was only solvable by choosing A or B to not be diagonaliz-
able.

7 [5]. Let X be the space of 2× 2 orthogonal matrices, {M :MMT = 1}. Recall that this is a
manifold! How many orientations are there on this manifold?
Answer. On a homework we figured out that this space had two components (one with
detM = 1, the other with detM = −1), each of which is a circle, so has two orientations.
In all there are 22 = 4 orientations.
Many people figured out that detM = ±1, so decided that specifying a point on X took
two numbers, θ and a sign. True. That doesn’t mean it’s 2-dimensional – the dimension
is the number of continuous parameters. X is 1-dimensional. (Which isn’t relevant to
answering this question – what was important was that X had two components, each
orientable.)


