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Abstract
To each k × n matrix M of rank k, we associate a juggling pattern of

periodicity n with k balls. The juggling pattern actually only depends
on the k-plane spanned by the rows, so gives a decomposition of the
“Grassmannian” of all k-planes in n-space.

There are many connections between the geometry and the juggling.
For example, the natural topology on the space of matrices induces a
partial order on the space of juggling patterns, which indicates whether
one pattern is “more excited” than another.

This same decomposition turns out to naturally arise from totally
positive geometry [Lusztig 1994, Postnikov ∼2004], characteristic p

geometry [Knutson-Lam-Speyer 2011], and noncommutative geometry
[Brown-Goodearl-Yakimov 2005]. It also arises by projection from the
manifold of full flags in n-space, where there is no cyclic symmetry.
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A discrete invariant of matrices.

For the purposes of this talk, an invariant of matrices is a function
f : {matrices} → somewhere that is invariant under row operations, or
equivalently, f(M) = f(AM) for A invertible. One of the best known is
rank : Mk×n → N (which is also invariant under column operations).

Today’s is the following. Think ofM as a list~v1, . . . ,~vn of k-dimensional column
vectors, and extend it to be an infinite but periodic list, ~vi = ~vn+i. Then define

JM : Z → Z, JM(i) := min
{
j ≥ i : ~vi ∈ span(~vi+1, . . . ,~vj)

}
≤ i+ n.

For example,

0 0 0 1 1 0 0 0 0 1... ...

v v
 −1  0

v v v v v v
 1  2  3  4  5  6

v v
 7  8

1 0 0 0 0 1 1 0 0 0
6 1 5 1 5 0

0 0 1 0 0 0 0 0 1 0

J(i)−i:

A nonobvious property: JM is 1:1 and onto! What else is true about these JM?
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Bounded juggling patterns, with a fixed periodicity n.

An affine permutation J : Z → Z is a function that’s 1:1 and onto, with the
periodicity J(i + n) = J(i) + n ∀i. These form a group isomorphic to Sn ⋉ Zn,
where Sn := Sym(Z/n) is the finite permutation group.

If we try to interpret i 7→ J(i) as “A ball thrown at time i comes down at time
J(i) − 1

2
, and is then thrown at time J(i)” we had better insist J(i) ≥ i, so balls

land after they are thrown. Call such affine permutations juggling patterns.
The number of balls in the air at time i + 1

2
, #

{
k < i + 1

2
: J(k) > i + 1

2

}
, is finite

and (thankfully) independent of i.

What jugglers actually make use of is not J, but its associated siteswap
J(1)−1 J(2)−2 . . . J(n)−n, the list of throw heights durations durations+1

2
.

Useful theorem to come: the number of balls is the average of the siteswap.

Some examples: 3 ∼ 3333, 4, 1, 51, 441, 4413, 330, 4440, 42, 552, 51414, 53...

If you want to see another hour of this, look up “knutson juggling” on YouTube.

Define a bounded juggling pattern to be an affine permutation J that not only
satisfies J(i) ≥ i, but also J(i) ≤ i+ n, for all i.

Theorem [Postnikov ∼2004, juggling interpretation in K-Lam-Speyer 2011].
Each JM (from the last page) is a bounded juggling pattern, and every k-ball
period-n bounded juggling pattern arises from some k× n matrices of rank k.
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Total positivity of matrices.

Matrices with real entries in which every submatrix has nonnegative
determinant have been studied since the 1930s and impact many areas (see the
entire book [Karlin 1968]). In our context we consider real k×nmatrices where
every k × k submatrix has determinant ≥ 0. These have a surprising cyclic
property, that will connect to the periodicity of our patterns:

Lemma. If
[

~v1 · · ·~vn
]

is a totally nonnegative matrix, so is
[

~v2 · · ·~vn (−1)k−1~v1
]

.

These
(

n
k

)

many k×k determinants are not independent; e.g. in 2×4 they satisfy

p13 p24 = p12 p34 + p14 p23, pij := det(columns i and j)

which is very stringent if we also require each pij ≥ 0!

Theorem [Postnikov ∼2004]. Let B(M) =
{
S ⊆ {1, . . . , n} : |S| = k, pS 6= 0

}
,

the bases of the matroid associated to the matrix M.
IfM is totally nonnegative and rank k, then B(M) and JM determine each other,
and B(M) is called a positroid. (If rank(M) 6= k, then B(M) = ∅.)
The positroid R≥0-stratum of totally nonnegative matrices with a given JM is
(nonempty and) homeomorphic to an open ball.

If one drops the total-nonnegativity assumption, the topology of a matroid
stratum can be, in some senses, arbitrarily bad (Mnëv’s universality theorem).
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The Freshman’s Dream, and splitting the Frobenius morphism.

Let R be a commutative ring in which 1+ 1+ . . .+ 1 = 0, added up p times. If R
has no zero divisors, then p must be prime. We assume p is prime and say that
R has characteristic p.

The Freshman’s Dream. In a ring of characteristic p, (a+ b)p = ap + bp,
i.e. r 7→ rp is an endomorphism called the Frobenius.

Call an abelian group homomorphism ϕ : R → R a Frobenius splitting if

• ϕ(rp) = r, ∀r ∈ R so, ϕ is a one-sided inverse

• ϕ(rpq) = r ϕ(q) another desirable property of such a “pth root” map.

Example. Let R = Fp[x], ϕ(cxk) = cxk/p if p | k, 0 otherwise.
A similar rule works for R = Fp[x1, . . . , xn], or that modulo any monomial ideal,
and many other ϕ exist for these R.

Example. Let R = Fp[a
2, a3] ≤ Fp[a], so R ≡ Fp[x, y]/〈y

2 − x3〉. Then 6 ∃ϕ.

It’s easy to show that if R has a Frobenius splitting ϕ, then R must have no
nilpotents. As the second example shows, though, the condition is much more
stringent.

These transparencies are available at http://math.cornell.edu/~allenk/ 4

http://math.cornell.edu/~allenk/


Compatibly split ideals.

In the category of “Frobenius split rings (R,ϕ) of characteristic p” the right
notion of ideal I ≤ R is one such that ϕ(I) ≤ I, called a compatibly split ideal.

Theorem [Enescu–Hochster 2008, Schwede 2009, Kumar–Mehta 2009].
If R is a Frobenius split Noetherian ring (or more generally a Noetherian scheme
with a Frobenius splitting on its structure sheaf), then it has only finitely many
compatibly split ideals (resp. ideal sheaves).

Sad proposition [K]. If R = Fp[x11, . . . , xkn] is the functions on the space of
k×nmatrices, andA = p12···k p23···k+1 p34···k+2 · · ·pn−1 n 12···k−2 pn12···k−1, then for
n, k > 1, n 6= k there is no splitting ϕ that compatibly splits 〈A〉.

Luckily we don’t want to apply this technology to matrices, but to rank k

matrices up to row-equivalence. So some k columns S ⊆ {1, . . . , n} must form a
basis, and we can use up the row operations making them the identity matrix.

Theorem [K-Lam-Speyer 2011]. Let RS be the functions on the (affine) space of
k × n matrices whose columns S are an identity matrix. Then there is a unique
splitting on RS that compatibly splits the 〈A〉 above, and its compatibly split
prime ideals are exactly given by the positroid stratification.

This is more cleanly stated as being about a splitting on the Grassmannian of
k-planes in n-space, which has an atlas given by these

(

n
k

)

affine patches.
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A noncommutative deformation of the Grassmannian.

Let R be a vector space, and ·ǫ : R×R → R a family of associative products on it,
one for each number ǫ. If ·0 is commutative, then we can think of (R, ·0) as the
ring of functions on a space Spec (R, ·0).

If I ≤ R is an ideal for every ·ǫ, then it is for ·0, and defines a subset of Spec (R, ·0).
But very few ideals arise this way, as noncommutative rings have far fewer of
them than commutative rings do! One says that very few subvarieties “survive
deformation to a noncommutative space”.

R = C[x11, . . . , xkn] has a family of products ·ǫ described to first order by

xij ·ǫ xkl = xkl ·ǫ xij + ǫ sign(k− i)sign(l− j)xilxkj +O(ǫ2)

Theorem [Brown-Goodearl-Yakimov 2006]. Let I ≤ R be a prime ideal of every
(R, ·ǫ), invariant under scaling the columns (xij 7→ tjxij). Then I ≤ (R, ·0) defines
one of our positroid strata, and each stratum arises this way from a unique I.

(This is connected to the Frobenius splitting, as follows. The first-order term
above defines a Poisson 2-tensor, which wedged with some column-scaling
vector fields gives an anticanonical tensor. From that tensor one can build a
map φ : R → R, which may or may not be a splitting; in this case it is.)
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An application of the positroid stratification to juggling.

Let J, J ′ : Z → Z be two juggling patterns. Call J ′ a simple excitation of J if

• J(i) = J ′(i) unless i ≡ a, b mod n for some pair a < b

• J(a) < J(b) and J ′(a) = J(b), J ′(b) = J(a)

• for all c in the open interval (a, b), J(c) /∈ (J(a), J(b)).

Call J ′ an excitation of J if they are connected by a sequence of simple such. It
is easy to see that J, J ′ must have the same number of balls, and their siteswaps
must have the same average. Example (with a, b underlined):

51414⋗ 24414⋗ 24234⋗ 23334 ∼ 33342⋗ 33333

Proposition. The unique least excited pattern with k balls is J(i) = i + k, with
all throws being ks. There are

(

n
k

)

most excited bounded juggling patterns with
k balls, with (n− k) 0-throws and k n-throws.

Corollary (stated before): the average of the siteswap is the number of balls.

Theorem [K-Lam-Speyer 2011]. The positroid stratum for J ′ is in the closure of
the stratum for J if and only if J ′ is an excitation of J.

Jugglers had already known about the b = a+1 simple excitations, but not these
more general ones, nor that there is a well-defined excitation number given by
the codimension of the corresponding stratum.
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