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Abstract

The root system Σ of a complex semisimple Lie algebra is uniquely deter-
mined by its basis (also called a simple root system). It is natural to ask whether
all homomorphisms of root systems come from homomorphisms of their bases.
Since the Dynkin diagram of Σ is, in general, not large enough to contain the
diagrams of all subsystems of Σ, the answer to this question is negative. In
this paper we introduce a canonical enlargement of a basis (called an enhanced
basis) for which the stated question has a positive answer. We use the name an
enhanced Dynkin diagram for a diagram representing an enhanced basis. These
diagrams in combination with other new tools (mosets, core groups) allow to
obtain a transparent picture of the natural partial order between Weyl orbits
of subsystems in Σ. In this paper we consider only ADE root systems (that is,
systems represented by simply laced Dynkin diagrams). The general case will
be the subject of the next publication.
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1 Introduction

A root system Σ of a complex semisimple Lie algebra g is a finite subset of a linear
space h(R)∗ dual to the real form h(R) of a Cartan subalgebra h ⊂ g. The Killing
form allows to identify h(R)∗ with h(R) and to interpret it as a Euclidean space. We

say that Σ̃ ⊂ Σ is a subsystem of Σ if it is a root system in its span and, for every
α, β ∈ Σ̃, α+β ∈ Σ implies α+β ∈ Σ̃. To every such Σ̃ there corresponds a semisimple
subalgebra g̃ ⊂ g generated by root vectors eα ∈ g̃ where α ∈ Σ̃. Subalgebras g̃, called
regular, play a fundamental role in the classification of all semisimple subalgebras of
semisimple Lie algebras [Dyn52b]. There is a natural partial order between conjugacy
classes of regular subalgebras of g. Namely, C1 ≺ C2 if g1 ⊂ g2 for some g1 ∈ C1

and g2 ∈ C2. Enhanced Dynkin diagrams appeared as a result of our attempts to
understand better this order.

A classification of complex semisimple Lie algebras is provided by the list of
Dynkin diagrams. The Dynkin diagram Γ of g has nodes representing roots in a
basis Π ⊂ Σ and bonds describing relations between the roots. Subdiagrams of Γ are
Dynkin diagrams of regular subalgebras of g. However, not all regular subalgebras
can be obtained this way. Besides, non-conjugate regular subalgebras can have iden-
tical Dynkin diagrams. Both problems can be efficiently solved by using enhanced
Dynkin diagrams.

In this paper we associate a diagram with every subset Λ of Σ. If Λ is a basis, it
coincides with the Dynkin diagram Γ of g. We construct an enhancement ∆ of Γ by
a recursive procedure which we call the completion. At each step, an extra node is
introduced and connected by bonds with a proper part of already introduced nodes.
Enhanced Dynkin diagrams for simple ADE algebras g are presented on Figure 2.1

Conjugacy classes of regular subalgebras of g (with respect to the group of inner
automorphisms of g) correspond bijectively to conjugacy classes of subsystems of Σ
(with respect to the Weyl group W of Σ). The correspondence preserves the natural

1Notation of roots is coordinated with that on Dynkin and extended Dynkin diagrams shown on
Figure 1.
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partial order. Group W acts on the set P of bases of all subsystems Σ̃ ⊂ Σ. Following
[Dyn52b], we use a name Π-systems for elements of P . Every Π-system is contained
in a unique subsystem of Σ. This implies a bijection between W -orbits in P and
classes of conjugate subsystems of Σ.

A crucial step is a transaction from elements α of Σ to pairs (α,−α). We call them
projective roots. To every root α there corresponds a projective root (α,−α), and to
every set Λ ⊂ Σ there corresponds a set of projective roots p(Λ). We put p(Σ) = S
and we call p(Λ) ⊂ S a projective basis if Λ is a basis of Σ. Projective subsystems
and projective Π-systems of S are defined in a similar way. Map p induces a bijection
between the class of all subsystems of Σ and the class of all projective subsystems. It
also induces a bijection between W -orbits in p(P) and classes of conjugate subsystems
of Σ.

If L ⊂ S and if |L| = k, 2 then L = p(Λ) for 2k sets Λ obtained from L by
selecting one element from every pair (α,−α). All Λ have the same diagram which
we assign as the diagram of L. We call a set of p rojective roots an enhanced basis
if its diagram is isomorphic to the enhanced Dynkin diagram of Σ. All enhanced
bases are conjugate. Besides, every projective Π-system is conjugate to a subset of an
enhanced basis. We reduce the classification of all subsystems to the classification of
orthogonal subsystems, i.e. those with bondless Dynkin diagrams. One of our tools
is a Reduction Lemma which specifies in any projective Π-system L1 elements a with
the property: if f is an isometry of L1 onto L2 ⊂ S and if f coincides with a w̃ ∈W ,
on L1 \ {a}, then f = w on L1 for some w ∈W . 3

A special role belongs to maximal orthogonal subsets M of Σ, which we call them
mosets. All mosets in Σ are conjugate. To classify orthogonal subsystems in a root
system Σ, we consider a subgroup of W formed by w ∈ W stabilizing M (we call it
a core group). We describe it in terms of the enhanced Dynkin diagram of Σ and

we apply this result to characterize conjugacy classes of subsystems Σ̃ ⊂ Σ (and

even homomorphisms Σ̃ → Σ ) as well as a partial order between these classes. A
byproduct of this investigation is an alternative way to obtain a known classification
of regular subalgebras.

1.1 Organization of the paper

We deal with several classes of objects: A – subsets of a root system Σ; B – subsets
of a projective root system S; C – diagrams of A and B. The Weyl group W acts on
A, B and C. Our goal is to investigate W-orbits in A. Classes B and C are tools to
this end.

Root subsystems, bases (simple root systems), extended bases, Π-systems are
subclasses of A commonly used in the theory of Lie algebras. All of them have
shadows in B. If this can cause no confusion, we apply the same name and the same
notation for each subclass and for its shadow. For instance, notation P is used for the

2We denote by |L| the cardinality of a set L.
3In general, w 6= w̃.
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class of Π-systems in A and in B, 4 and a name D4-sets is used for subsets of Σ and
for subsets of S with the Dynkin diagram of type D4. We keep the same convention
for concepts like mosets and core groups introduced in this paper.

Often a statement formulated in the language of one of classes A,B,C can be
easily translated into the language of another class. We may state a proposition in
a language of A, prove it in terms of B and apply it in the setting of C. This is
done, for instance, in Section 4 where Classification Theorems 4.1, 4.2, 4.3 are stated
in terms of root systems, proved in terms of projective root systems and applied
to description of Weyl orbits in terms of enhanced Dynkin diagrams. In Section 2
completion is defined for subsets of Σ but constructed by using subdiagrams of an
enhanced Dynkin diagram.

In Section 1 we place the basic diagrams after Historical notes because references
to them are spread over the entire paper.

We start Section 2 with introducing diagrams Γ of Λ ⊂ Σ and ∆ of L ⊂ S. We
define a class of complete subsets of Σ and we introduce a completion X of X ⊂ Σ as
a minimal complete extension of X. If X is a basis, then X is an enhanced basis and
its diagram is an enhanced Dynkin diagram of Σ. We denote it ∆(Σ). A recursive
procedure for constructing a completion is illustrated by an example on Figure 3.We
conclude the section by proving important properties of enhanced and extended bases
and automorphisms of their diagrams. In particular, we establish that every Π-system
is conjugate to a subset of an enhanced basis.

A crucial role in investigating which Π-subsystems of an enhanced basis are con-
jugate is played by Reduction Lemma that is proved at the beginning of Section 3.
The rest of this section is devoted to a description of mosets and core groups for all
irreducible root systems.

In the Appendix we formulate basic facts on root systems, their bases and auto-
morphisms and on the Weyl groups. For proofs we refer to the literature. At the end
of the Appendix we list notation used in the paper.

1.2 Historical notes

An initial motivation for investigating subalgebras of Lie algebras was the problem
of a classification of primitive transformation groups posed by S. Lie and solved by
him in spaces of 1, 2 and 3 dimensions. The case when the group is not semisimple
was examined by V. V. Morozov in 1939.

Investigating semisimple subalgebras in arbitrary Lie algebras can be reduced to
studying such subalgebras in semisimple algebras. For classical algebras An, Bn, Cn,
Dn semisimple subalgebras were studied by Malcev [Mal44]. The case of exceptional
algebras G2, F4, E6, E7, E8 was treated by Dynkin [Dyn52b]. A principal step in
this treatment was the classification of all regular semisimple subalgebras. For every
simple Lie algebra, a list of elements Λ1, . . . ,Λm of P was given such that every Weyl
orbit in P is represented by subsets of Λk, k = 1, . . . , m. It was determined by direct
case by case computations which of these subsets represent the same orbit. Only

4However, to avoid confusion, we write sometimes P(Σ) and P(S).
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the results of these computations are presented in [Dyn52b]. The results of [Dyn52b]
were used by a number of authors.

Recently Oshima [Osh07] verified them in his own way by introducing as a new
tool the relation between orbits of Λ and of its orthogonal complement in Σ. His
paper contains a number of useful tables.

Dynkin in [Dyn52b] applied his method also to subalgebras of classical algebras.
However some time ago he discovered that his description of orbits in D2m (more
explicit than that in [Mal44]) is incomplete. He also wanted to have a picture of the
partial order between subalgebras which is very difficult to get from the classifica-
tion in [Dyn52b]. A discussion of these problems resulted in the beginning of the
collaboration between the authors of the present article. The ideas of introducing
projective roots, enhanced Dynkin diagrams and mosets should be credited to the
second author.

Remarkably, slight modifications of enhanced Dynkin diagrams appeared recently
in a paper of McKee and Smyth [MS07]. Their diagrams served for a description of all
integer symmetric matrices with all eigenvalues in the interval [−2, 2]. Investigation
of the relation between the two classes of diagrams may be a subject of the future
work.
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1.3 Basic diagrams

1 2 n

An

1 2 n

0

Ân, n ≥ 2
1 0

Â1

n − 1n − 221

n

Dn

1 2 n − 2 n − 1

0n

D̂n

1 3 4 5 6

2

E6

1 3 4 5 6

2

0

Ê6

1 3 4 5 6 7

2

E7

1 3 4 5 6 7

2

0

Ê7

1 3 4 5 6 7 8

2

E8

1 3 4 5 6 7 8 0

2

Ê8

Figure 1: Dynkin diagrams and extended Dynkin diagrams of ADE systems
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1 2 3 4 2m − 2

2m − 1

∆(A2m−1)

1 2 3 4 2m − 1

2m

∆(A2m)

2m − 1

2m − 2

(2m − 1)′

3

2

1

3′1′

2m − 3

(2m − 3)′

4

∆(D2m)

2m − 1

2m

(2m − 1)′

2

3

1′

1

3′

4

∆(D2m+1)

1

2

3 4

5

6

ℓ2

ℓ1

∆(E6)

ℓ1

1

ℓ2

6

4

ℓ4

ℓ3

3

7

2

5

∆(E7)

1

22

3

4

567

8

8

ℓ1ℓ2

ℓ4

ℓ3

ℓ3 ℓ5

ℓ5

ℓ5

ℓ5

ℓ7ℓ7

ℓ6ℓ6

ℓ8

ℓ8

∆(E8)

Figure 2: Enhanced diagrams for ADE root systems

For every enhanced Dynkin diagram ∆ one of Dynkin diagram Γ ⊂ ∆ is marked
by boldfacing its bonds. Except Dn, we use for nodes of Γ the same labels as on
Figure 1. The extra nodes for E6, E7 and E8 are labeled ℓ1, ℓ2, . . . in the order
they are introduced by an algorithm described in Subsection 2.2. We draw separate
diagrams for D2m+1 and D2m. Label 1′ is substituted for n and extra nodes are
labeled 3′, 5′, . . . , (2m − 1)′. For E6 and E7 it is convenient to embed the enhanced
diagrams into the 3-dimensional space. In the case of E7 the nodes are represented
by the vertices of a tetrahedron, by the centers of its edges and by the center of the
tetrahedron. Dashed lines are used for bonds shaded by faces. The enhanced diagram
for E8 is a 4 × 4 lattice on the torus: each bottom node represents the same root as
the corresponding top node and a similar identification is made for the left and right
sides of the square.

The diagram ∆(E8) can be also interpreted as vertices and edges of a hypercube
in R4. ∆(E7) can be obtained by eliminating any vertex and all edges containing it.
To get ∆(E6) one needs to drop any edge and all edges on 2-faces that contain this
edge.

Boldfaced nodes represent a maximal orthogonal subsystem of S.
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2 Enhanced Dynkin diagrams

Starting from this point we consider only ADE root systems Σ. In this case the
Cartan integers (α|β) = 2(α,β)

(β,β)
are equal to 0, 1 or −1 for all non-collinear α, β ∈ Σ.

2.1 Diagrams and projective diagrams

We define a diagram ΓΛ of Λ ⊂ Σ by assigning a node to every α ∈ Λ and by
connecting two nodes representing roots α, β ∈ Λ by a single bond, if (α, β) 6= 0
and α 6= −β, and by a quadruple bond, if α = −β.5 We also introduce a projective
diagram ∆Λ of Λ which is obtained from ΓΛ by identifying two nodes corresponding to
every pair α,−α (and by dropping the quadruple bond connecting the nodes). Two
nodes of ∆Λ are connected by a bond if and only if they represent non-orthogonal
roots. We call such nodes (and roots) neighbors. Subdiagrams of any diagram are in
a 1-1 correspondence with subsets of nodes.

A subset Λ ⊂ Σ is called symmetric, if Λ = −Λ. There is a 1-1 correspondence
between symmetric subsets of Σ and all subsets of the projective root system S.[The
latter correspond bijectively to subdiagrams of the projective diagram of Σ.]

A set of roots is called irreducible if it’s diagram is connected. Every set Λ ⊂ Σ
is the union of its maximal irreducible subsets. We call them irreducible components
of Λ.

A linearly independent subset Λ of Σ is a basis of a subsystem Σ̃ if and only if
α − β /∈ Σ for all α, β ∈ Λ. Recall that we use the name Π-systems for such Λ and
that we denote the class of all Π-systems by P.

A partial order in Σ is associated with a basis Π by the condition: α ≺ β if
β − α can be represented as the sum of elements of Π. If Σ is irreducible, then there
is a unique minimal root α ∈ Σ with respect to this order ([Bou02, Chapter VI,
Proposition 25(i)]). The set

Π̂ = Π ∪ {α},

is called an extended basis. The diagram Γ̂ = ΓbΠ is the extended Dynkin diagram of

Σ. Similarly, we define extended Π-system Λ̂ for every irreducible Π-system Λ.
We say that nodes a1, a2, . . . , ak, k ≥ 3 of a diagram form a cycle if ai is a neighbor

of ai+1 for 1 ≤ i ≤ k−1, and ak is a neighbor of a1. A diagram is acyclic, if it contains
no cycles. We say that a root ε is an end of Λ ⊂ Σ if it has no more than one neighbor.
Every root set with an acyclic diagram contains an end.

Proposition 2.1. Let Φ be a symmetric subset of Σ such that ∆Φ is connected and
acyclic. Then Φ = Λ ∪−Λ where Λ is either a Π-system or an extended Π-system.

Proof. Choose any Λ ⊂ Φ such that Λ∩−Λ = ∅ and Λ ∪−Λ = Φ. Since ΓΛ = ∆Φ is
acyclic, we can assume (by replacing α by −α for some α ∈ Λ) that (α, β) ≤ 0 for all
α, β ∈ Λ. Now Proposition 2.1 follows immediately from [Dyn52b, Lemma 5.1].

5The number of bonds is equal to the integer (α|β)(β|α) which can be only 0,1 or 4 in case of
ADE root systems.
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Proposition 2.1 implies that all connected acyclic diagrams are presented on Fig-
ure 1.

2.2 Completion

Definition 2.1. A symmetric subset Φ ⊂ Σ is called complete if the condition Λ ⊂ Φ
implies Λ̂ ⊂ Φ for every D4-set Λ ∈ P of type . The completion X of X ⊂ Σ is the
intersection of all complete subsets of Σ containing X.

Clearly, X ⊂ Y if X ⊂ Y .
To construct X we introduce a sequence of symmetric sets

Φ0 ⊂ Φ1 ⊂ . . .Φi · · · ⊂ Φk

where Φ0 = X, Φk = X and, for every incomplete Φi−1, a diagram ∆Φi
is defined as

an elementary extension of ∆Φi−1
.

An elementary extension ∆′ of any diagram ∆ is obtained by extending a D4-
subdiagram D ⊂ ∆ to a D̂4-subdiagram of ∆Σ. ∆′ contains an extra node ℓ connected
by a bond with the branching node of D and with every node of ∆ \ D that has 1
or 3 neighbors among the ends of D. The procedure is motivated by the following
proposition.

Proposition 2.2. Let Λ be a D̂4-subset of a symmetric set Φ. If β ∈ Σ \ Λ and if
Λ ∪ {β} is irreducible, then β has two or four neighbors among end elements of Λ.

Proof. If Λ = {α0, α1, α2, α3, γ} with α0, α1, α2, α3 representing the end nodes, then
α0 + α1 + α2 + α3 + 2γ = 0. 6 This implies

(α0|β) + (α1|β) + (α2|β) + (α3|β) + 2(γ|β) = 0.

Taking this relation modulo 2, we obtain that β is the neighbor of an even number
of the ends in Λ.

On Figure 3 we illustrate this procedure on an example of a symmetric set X de-
scribed by the Dynkin diagram ∆0 of E7. We start with its D4-subdiagram {5, 2, 3, 4}
(in notation of Figure 1). We get a diagram ∆1 by introducing an extra node ℓ1 con-
nected with nodes 1, 4 and 6. In ∆1, we choose a D4-subdiagram {1, 4, 6, ℓ1}

7 and we
introduce an extra node ℓ2 connected with ℓ1, 2 and 7. The result of the second step
is ∆2. We arrive at ∆3 by extending a subdiagram {4, ℓ1, ℓ2, 6} of ∆2 by a node ℓ3.
Finally, we get a diagram ∆4 by introducing ℓ4 connected with ℓ2 and 1. ∆4 repre-
sents X. (A different selection of elementary extensions would lead to an isomorphic
diagram with a permutation of labels ℓ1, ℓ2, ℓ3, ℓ4.)

6To prove this, evaluate the squared length of the left side.
7Another possible choice is {ℓ1, 5, 7, 6}.
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∆2
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1
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ℓ3

3

7

2

5

∆3

ℓ1

1

ℓ2

6

4

ℓ4

ℓ3

3

7

2

5

∆4

Figure 3: Detail for E7

2.3 Enhanced bases and enhanced Dynkin diagrams

Definition 2.2. An enhanced basis of Σ is the completion of a basis of Σ. Its
projective diagram is called an enhanced Dynkin diagram of Σ.

Conjugacy of all bases implies conjugacy of all enhanced bases, hence isomorphism
of all enhanced Dynkin diagrams of Σ. These diagrams for irreducible ADE root
systems are presented on Figure 2.

A fundamental property of enhanced bases is established in the following theorem.

Theorem 2.1. Any Π-system is conjugate to a subset of an enhanced basis.

In the proof of this property we use a class of transformations of P introduced in
[Dyn52b].

Definition 2.3. An elementary transformation of an irreducible Π-system Λ is a set
Λα = Λ̂ \ {α}, where α ∈ Λ̂. An elementary transformation of an arbitrary Π-system
Λ is an elementary transformation of one of its irreducible components. We call this
transformation trivial if Λα is isomorphic to Λ.8

It follows from [Dyn52b, Theorems 5.2, 5.3] that:

8A bijection ϕ : Λ1 → Λ2 is an isomorphism if it preserves the bracket (·|·).
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Proposition 2.3. Let Σ be a root system of rank n. Every Λ ∈ P with |Λ| = n can
be obtained from any basis of Σ by a sequence of elementary transformations. If Σ is
a system of rank n, then any Λ ∈ P with |Λ| < n is contained in a Π-system with n
elements.

Proposition A.6 implies:

Proposition 2.4. All trivial elementary transformations of Λ ∈ P are conjugate.

Proposition 2.5. Let Σ = Dn
9 and 2 ≤ k ≤ n − 2.10 Then all Π-systems of type

Dk +Dn−k in Σ are conjugate.

Proof. Fix a basis Λ. Note that if Λα has type Dk + Dn−k, then α corresponds to
either label k or to n − k on Figure 1. Clearly, these two Π-systems are conjugate
by a w ∈ WbΠ moving node 1 to n− 1. [Such w exists by Proposition A.6.] Finally,
note that a Π-system of type Dk +Dn−k cannot be obtained from Λ by a sequence of
more than one non-trivial elementary transformations, since the number of irreducible
components of the transformation increases after each step.

Proof of Theorem 2.1. Let Φ ⊂ Σ be an enhanced basis. We need to demonstrate
that P is contained in the class L of Λ with the property: w(Λ) ⊂ Φ for some w ∈W .
Class L is preserved under the action of W and it contains, with every Λ, all its
subsets. Since Φ is the completion of a basis, we need only to demonstrate that L
contains, with every Λ ∈ P, all elementary transformations of Λ. It is sufficient to
check this for irreducible Λ. For Λ = D2m, E6, E7 or E8, this is true because Φ
contains Λ̂ (see Figure 2). For type An all elementary transformations are trivial,
hence they belong to L by Proposition 2.4. Finally, for type D2m+1 all elementary
transformations are of type Dk1

+ Dk2
with k1 + k2 = 2m + 1, and it is clear from

Proposition 2.5 and Figure 2 that they belong to L.

For any group G of transformations of Σ and any X ⊂ Σ, we put GX = {g ∈ G :
g(X) = X}. In particular, WX stands for the subgroup of the Weyl group preserving
X.

Proposition 2.6. All bases of Σ contained in an enhanced basis Φ are conjugate by
w ∈WΦ.

Proof. Suppose Φ = Π, where Π ⊂ Σ is a basis. For any other basis Π′ ⊂ Φ, by
Proposition A.1, there is a w ∈ W such that w(Π) = Π′ and therefore w(Π) = Π′.
Since a complete Φ contains Π′, it contains Π′ = w(Φ), and w(Φ) = Φ because
|w(Φ)| = |Φ|.

Proposition 2.7. Let Π be a basis of Σ and Φ = Π, Π̂ or Π. Every automorphism
of ∆Φ is induced by an automorphism of Σ. The latter can be chosen in W , if Σ is
not of type D2n.

9We abuse notation by writing, e.g. X = Dn if X is a root system, projective root system or a
Π-system of type Dn.

10We have D2 = A1 + A1.
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Proof. Let f be an automorphism of ∆ = ∆Φ. The Dynkin diagrams Γ = ΓΠ and
Γ′ = f(Γ) are subdiagrams of ∆, and Γ′ = ΓΠ′ for a basis Π′ ⊂ Φ. By Proposition
2.6, w(Π′) = Π for some w ∈ WΦ and therefore w(Γ′) = Γ and wf(Γ) = Γ. By
Proposition A.4, the map wf is induced by an automorphism ϕ of Σ. Automorphism
ψ = ϕ−1wf of ∆ is trivial on Γ. This implies cases Φ = Π and Φ = Π̂. If Φ = Π,
then ∆ is the enhanced Dynkin diagram of Σ. There exists a sequence of elementary
extensions Γ = ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆k = ∆. We prove by induction that ψ is trivial
on ∆i for i = 0, . . . , k. Therefore f is induced by w−1ϕ ∈ Aut Σ.

If Σ = D2n, then, by Proposition A.5, Aut Σ is generated by W and − Id. Since
− Id acts trivially on ∆, Aut Σ and W induce the same group of transformations on
∆.

3 Mosets and core groups

3.1 Reduction Lemma

We consider a projective root system S and we put

〈a|b〉 = |(α|β)| ,

for every a = (α,−α), b = (β,−β) ∈ S. By replacing (α|β) by 〈a|b〉 we introduce the
concepts of orthogonality, irreducibility and isomorphism for subsets of S.

We denote I(Λ,Σ) the set of all embeddings of Λ ⊂ Σ into Σ preserving (·|·).11 For
a f ∈ I(Λ,Σ) we write f ∈ W (Λ,Σ) if there exists a w ∈ W such that f = w on Λ.
Clearly, W (Λ,Σ) ⊂ I(Λ,Σ). In a similar way we introduce classes W (L, S) ⊂ I(L, S).

Lemma 3.1 (Reduction Lemma). Suppose f ∈ I(L, S) and a is the neighbor of an

end e of L. Then f ∈ W (L, S) if f̃ ∈ W (L̃, S), where f̃ is the restriction of f to

L̃ = L \ {a}. 12

Note that reflections

sα(β) = β − (β|α)α, β ∈ Σ,

satisfy the condition

sαsβsα = sγ where γ = sα(β), for every α, β ∈ Σ.

Lemma 3.2. Let L̃ ⊂ L ⊂ S, f ∈ I(L, S), f(a) = a for all a ∈ L̃. If a ∈ L and

〈a|f(a)〉 6= 0, then the restriction f̃ of f to L̃ ∪ {a} belongs to W (L̃ ∪ {a}, S).

11We will call elements of I(Λ, Σ embeddings.
12This Lemma is false for S substituted by Σ. For instance, suppose Σ is of type A2, Λ is its basis

and f = − Id. Any α ∈ Λ is the neighbor of an end and the restriction f̃ of f to Λ̃ = Λ\{α} belongs

to W (Λ̃, Σ) but f /∈ W (Λ, Σ).

12



Proof. Set b = f(a). If a = b, then f̃ = Id. Suppose a 6= b. Then there exist α, β ∈ Σ
such that p(α) = a, p(β) = b and (α, β) < 0. Since (α|β) = (β|α) = −1, we have

sα(β) = sβ(α) = α+ β = γ ∈ Σ

and sγ = sαsβsα.

Let us show that sγ(a) = b and sγ(ℓ) = ℓ for all ℓ ∈ L̃. We have

sγ(α) = sαsβsα(α) = −sαsβ(α) = −sαsα(β) = −β.

Hence sγ(a) = b. Let ℓ ∈ L̃. There exists λ ∈ Σ such that p(λ) = ℓ and (α, λ) ≤ 0.
Since |(α|λ)| = |(β|λ)| we get (γ|λ) = (α|λ) + (β|λ) = 0 or − 2. If (γ|λ) = 0, then
sγ(λ) = λ. If (γ|λ) = −2, then γ = −λ, sγ(λ) = −λ and thus sγ(ℓ) = ℓ.

Proof of Lemma 3.1. We may assume that f̃ = Id. Suppose f̃ ∈ W (L̃, S). If
〈a|f(a)〉 6= 0, then f ∈W (L, S) by Lemma 3.2.

Now suppose 〈a|f(a)〉 = 0. Let ε ∈ Σ be such that p(ε) = e. Set f ′ = sεf ∈

I(L, S) and let ℓ ∈ L̃ \ {e}. We have f ′(ℓ) = ℓ because 〈e|ℓ〉 = 0. Since 〈a|f ′(a)〉 6= 0,

f ′ ∈W (L̃, S) by Lemma 3.2. Hence f = sεf
′ ∈W (L̃, S).

3.2 Mosets

Definition 3.1. An orthogonal set M ⊂ X ⊂ Σ is a moset in X if none element
of X \M is orthogonal to M . A moset O of an irreducible X is perfect if X \ O is
orthogonal and |O| ≥ |X \ O|. A perfect moset of an arbitrary X is the union of
perfect mosets of irreducible components of X.

Every Π-system has a perfect moset. Indeed, every basis Π of an irreducible root
system is the union of two disjoint orthogonal subsets and at least one of them is a
perfect moset in Π.

Mosets and perfect mosets in S are defined similarly. Clearly, p(M) is a moset in
S if M is a moset in Σ.

Theorem 3.1. Let O be a perfect moset in L ∈ P(S) and let f ∈ I(L, S). Then

f ∈W (L, S) if f̃ = f |O ∈W (O, S).

Proof. Dynkin diagrams on Figure 1 demonstrate that any perfect moset in L contains
at least one of the end nodes e. Hence it does not contain the neighbor a of e, and we
can delete a. As the result we get another perfect moset of a Π-system. Therefore we
get Theorem 3.1 by using an induction in |L \O| and by applying Lemma 3.1.

3.2.A. M ⊂ Σ is a moset if and only if its intersection with every irreducible
component of Σ is a moset in this component.

The set ΨX(Σ) ⊂ Σ of all roots orthogonal to X ⊂ Σ forms a subsystem in Σ. For
every Λ ⊃ X, we denote by ΨX(Λ) the set of all β ∈ Λ orthogonal to X.

13



3.2.B. If α ∈ M ⊂ Σ, then M is a moset of Σ if and only if M \ {α} is a moset of
Ψα(Σ).

Proposition 3.1. All mosets in Σ are conjugate and therefore they have the same
cardinality µ(Σ).

This follows by induction in rank of Σ from Proposition A.2 and 3.2.A, 3.2.B.

Since every orthogonal set is contained in a moset, we have

3.2.C. An orthogonal set with m elements is a moset if and only if m = µ(Σ).

It follows from 3.2.B that

3.2.D. µ(Σ) = µ(Ψα(Σ)) + 1.

3.2.E. Values of µ(Σ) for irreducible Σ are given by the table:

Table 1: Cardinality of mosets

Σ : An Dn E6 E7 E8

µ(Σ) : qn+1 2qn 4 7 8

where qn is a maximal integer not exceeding n
2
.

This is an implication of 3.2.D and the following result.

3.2.F. Types of Ψα(Σ) for irreducible Σ are given in Table 2.

Table 2: Types of the orthogonal complements to roots

Σ : An Dn E6 E7 E8

Ψα(Σ) : An−2 Dn−2 + A1 A5 D6 E7

[Since all roots are conjugate, their orthogonal complements have the same type.]

Proof. Let α be the minimal root with respect to a basis Π of Σ. For every 0 < β ∈ Σ
we have

β =
∑

γ∈Π

kγγ,

where kγ ≥ 0 for all γ ∈ Π. Therefore β ∈ Ψα(Σ) if and only if
∑

γ∈Π kγ(α, γ) = 0.
Since α is minimal, (α, γ) ≤ 0 for all γ ∈ Π. Hence β ∈ Ψα(Σ) if and only if kγ = 0
for all γ such that (α, γ) 6= 0. Thus, the Dynkin diagram of Ψα(Σ) is obtained from
the extended Dynkin diagram of Σ by eliminating nodes representing the minimal
root and all its neighbors. Table 3.2.F follows from Figure 1.

We deduce from 3.2.F by induction in |O| that:

14



3.2.G. If O is an orthogonal subset of an irreducible root system Σ, then ΨO(Σ)
contains at most one irreducible component not of type A1.

We denote this irreducible component by ΘO(Σ) and we put ΘO(Σ) = ∅ if it does
not exist.

Importance of 3.2.G for the classification of subsystems is illustrated by the following
example.

Example 3.1. We claim that I(L, S) = W (L, S) for every irreducible projective root
system S and every its Π-system L = A2m. Let e be an end of L and let f ∈ I(L, S).
Since W is transitive on S, we may assume f(e) = e. The set Ψe(L) is a Π-system of
type A2m−2 in the projective root system Ψe(S). Hence Ψe(L) ⊂ Θe(S). We deduce
that f ∈W (L, S) by induction in m and Reduction Lemma.

3.3 Core groups

Definition 3.2. Let M be a moset of Σ. Group WM is called a core group of Σ.

It follows from Proposition 3.1 that core groups corresponding to all mosets M
are isomorphic. Therefore the type of WM is determined by the type of Σ and we
denote it Cor(Σ). We use notation ν(Σ) for the order of this group.

A core group WM can be identified with a subgroup of the permutation group
S(M). Indeed, there is a natural homomorphism of WM to S(M). It follows from
Proposition A.3 that w = Id if w ∈ W acts trivially on M because none of roots is
orthogonal to M .

3.3.A. Let Σ = ∪kΣk be a partition of Σ into irreducible components. Then Mk =
M ∩ Σk is a moset in Σk, and WM is the direct product of WMk

.

Proposition 3.2. If Λ ⊂ M and w(Λ) ⊂ M for some w ∈ W , then there exists a
w′ ∈WM such that w′(α) = w(α) for all α ∈ Λ.

Proof. The set w(Λ) belongs to mosets M and w(M). If follows from 3.2.B that

M1 = M \w(Λ) and M2 = w(M) \w(Λ) are mosets of the orthogonal complement Σ̃

to w(Λ) in Σ. By Proposition 3.1, there is a w̃ ∈W (Σ̃) ⊂W such that w̃(M2) = M1.
Since w̃ acts trivially on w(Λ), w′ = w̃w preserves M .

3.3.B. Suppose L is a Π-system in S, M is a perfect moset in L and f ∈ I(L, S).
Let O be a moset in L such that f(O) ⊂M . Then f ∈W (L, S) if f |M ∈WM(O,M).

3.3.C. If Σ is irreducible, then WM acts transitively on M .

This follows from Proposition A.2 and from Proposition 3.2 applied to singletons.
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3.3.D. The isotropy group (WM)α, where α ∈ M , is isomorphic to the core group
of Ψα(Σ).

This follows from Proposition A.3.

We conclude from 3.3.C and 3.3.D, that:

3.3.E. ν(Σ) = ν(Ψα(Σ))µ(Σ).

3.3.F. We have:

Table 3: Orders of core groups

Σ : An D2m+1 D2m E6 E7 E8

ν(Σ) : µ! 2m ·m! 2m−1 ·m! µ! 168 1344

where µ = µ(Σ).

This follows from 3.3.E and Tables 2, 1.

Suppose Σ is irreducible. Since WM ⊂ S(M), 3.3.F implies:

Theorem 3.2. WM = S(M) if and only if Σ = An or E6.

Core groups of Dn, E7 and E8 will be described in terms of enhanced Dynkin
diagrams. For D2m and D2m+1 we represent M by a matrix

(
1 3 . . . 2m− 1
1′ 3′ . . . (2m− 1)′

)
. (3.1)

For E7 and E8 a new labeling of M is introduced on Figure 4 where the labels are
vectors of the space F3

2 over the field F2 with elements 0, 1.

111

101

110

100

011

001

010

∆(E7)

100100

001

010110

111

101

011

011 000

000

000

000

∆(E8)

Figure 4: ∆(E7) and ∆(E8)
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Theorem 3.3. The core group Cor(D2m+1) can be represented as the group of per-
mutations of columns in the matrix (3.1) combined with transpositions of the entries
in some of columns. Permutations with an even number of such transpositions form
a subgroup representing Cor(D2m).

Proof. Transpositions τi of 2i − 1 and (2i − 1)′ leaving fixed the rest of the entries
generate a subgroup T of S(M) of order 2m. Transpositions σi of columns containing
2i−1 and 2i+1 generate a subgroup S of S(M) of order m!. The pair S, T generates
a subgroup of order 2m · m! that is equal to WM by 3.3.F. To prove Theorem 3.3
for D2m+1 it is sufficient to demonstrate that τi and σi belong to WM . Similarly, to
prove Theorem 3.3 for D2m+1 it is sufficient to demonstrate that τiτi+1 and σi belong
to WM .

First, we consider the case ofD4. In this case every permutation ofM is induced by
an automorphism of ∆(D4) which, by Proposition 2.7, is induced by an automorphism
of Σ. Hence WM is a normal subgroup of S(M). There is only one such subgroup of
four elements, and it is generated by σ1, σ2 and τ1τ2. The case of any D2m, m ≥ 2,
follows from D4.

In order to prove the Theorem for D2m+1, it suffices to show τ1 ∈ WM . But τ1
is induced by an automorphism of ∆, hence the statement follows from Proposition
2.7.

In the case of E7, only nonzero vectors of F3
2 are used for labeling M .

Theorem 3.4. Cor(E7) is represented by GL3(F2).

More precisely, we identify Cor(E7) with a subgroup Scor of S(M) and we demon-
strate that Scor coincides with the group Sgl = GL3(F2) of all invertible linear trans-
formations of F3

2.

Proof. Note that |Sgl| = 168. By 3.3.F, Scor has the same order. Therefore it is
sufficient to prove |S| ≥ 168 for the group S = Scor ∩ Sgl.

Every automorphism σ of ∆(E7) preserves the vector 111. We see from Figure 4
that x+y+z = 0 if and only if the nodes with these labels lie either on the same face
of the tetrahedron or on a line through its center. This property is preserved under σ
and therefore σ(x)+σ(y)+σ(z) = 0. Since z = x+y, we have σ(x+y) = σ(x)+σ(y),
which implies σ ∈ Sgl. By Proposition 2.7, every automorphism σ is induced by an
element of the Weyl group which implies that automorphisms σ1, . . . , σ24 determined
by 24 rotations of the tetrahedron belong to Scor.

Now we consider an automorphism of D̂4-set {2, 3, 4, 5, ℓ1} ⊂ ∆(E7) on Figure 2
which transposes 3 with ℓ1 and 2 with 5. By Theorem 3.3 it is induced by a τ ∈ Scor

not moving elements 7, ℓ3, ℓ4. We use Figure 4 to check that τ(x + y) = τ(x) + τ(y)
for all x, y ∈ M . Therefore τ ∈ Sgl.

Since |M | = 7 is prime, transformations τ, σ1, . . . , σ24 generate a subgroup of S

acting transitively on M . The order of this subgroup is equal at least to 24 × 7 =
168.

Definition 3.3. The parity ρ(O) of a subset O ⊂ M is equal to 0 if the sum of all
labels of O is 0 and equal to 1 if this sum is not 0.
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Corollary 3.1. Two subsets of M with the same cardinality k are congugate if k 6=
3, 4. If k = 3 or 4, then they are conjugate if and only if they have the same parity.

It is sufficient to check this for k = 1, 2, 3 because w(M \O) = M \O′ if w(O) = O′.
Note that, for |O| = 3, ρ(O) = 1 if and only if O corresponds to a basis of F3

2. The
rest follows from Theorem 3.4.

Corollary 3.2. WO induces on O the group of all permutations if |O| = 3 or if
|O| = 4 and ρ(O) = 0. If |O| = 4 and ρ(O) = 1, then WO induces on O the group of
all permutations preserving an element α.13

100 110 010

011

001

101

111

Figure 5: Fano plane

Remark 3.1. By comparing Figure 4 with Figure 5 we see that a moset M can be
interpreted as a projective plane over F2 (Fano plane). Linearly dependent triplets
are represented by lines in the plane and Cor(E7) is represented by the collinearity
group.

Mosets M and M⋄ of E7 and E8 on Figure 4 are related by the formula

M⋄ = M ∪ {0}

where 0 is the zero vector 000.

Theorem 3.5. Cor(E8) is represented by the group AFF3(F2) of all affine transfor-
mations of F3

2.

Proof. Denote S
⋄

aff and S
⋄

cor subgroups of S(M⋄) representing AFF3(F2) and Cor(E8).
Group Sgl = Scor introduced in proof of Theorem 3.4 is naturally embedded into
S⋄

aff ∩S⋄

cor. By 3.3.D and Theorem 3.4, the isotropy group of S⋄

cor at 0 coincides with
Scor. The parallel translation τ by 111 (in M⋄) is an element of S⋄

aff . It belongs also
to S⋄

cor because it is induced by an automorphism ϕ of ∆(E8).
14

13α is a unique element such that ρ(O \ {α}) = 0.
14To define ϕ we relabel ∆(E8) by elements (a, b) of group F4×F4 and we put ϕ(a, b) = (a+2, b+2).
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Group S⋄

aff is generated by Sgl and τ . Group generated by Scor and τ acts tran-
sitively on M⋄ and therefore its order is at least equal to 8|Scor| = 8 · 168 = |S⋄

cor|.
Since Sgl = Scor, we conclude that S

⋄

aff ⊂ S
⋄

cor, and S
⋄

aff = S
⋄

cor because both groups
have the same order.

Corollary 3.3. Two subsets of M with the same cardinality k are congugate if k 6= 4.
If k = 4, then they are conjugate if and only if they have the same parity.

Proof of Corollary 3.3 is similar to that of Corollary 3.1.
A parity ρ(O) of an orthogonal set O is a parity of a O′ ⊂ M conjugate to O. (By

Corollaries 3.1 and 3.3, ρ(O) does not depend on the choice O′.)

Corollary 3.4. If |O| = 4, then WO induces on O the group of all permutations.

Remark 3.2. Consider a function η defined on irreducible ADE root systems by a
table:

Σ : An Dn E6 E7 E8

η(Σ) : µ(An) 1 µ(E6) 2 3

The condition η(Σ) < |O| < µ(Σ) − η(Σ) is necessary and sufficient for existence
of a set O′ isomorphic but not conjugate to an orthogonal set O.

We do not use this fact. It can be proved by using Theorem 3.3, Corollaries
3.1, 3.3 and Table 2. [η(Σ) is a minimal value of |O| such that ΨO(Σ) is empty or
reducible.]

3.4 Orthogonal subsets of an enhanced basis

Suppose S is a projective root system. We want to classify Weyl orbits in P by
using a classification of orbits of a core group WM . It is convenient to work not with
the action of W on P but with its action on embeddings of L ∈ P into S. Maps
f1, f2 ∈ I(L, S) lie on the same Weyl orbit if and only if f2f

−1
1 ∈W (f1(L), S). For a

moset M ⊂ S and a subset O ⊂M put f ∈WM(O,M) if f = w on O for a w ∈WM .
It follows from Proposition 3.2 and Theorem 3.1 that:

Proposition 3.3. Let L ∈ P and f ∈ I(L, S). For a perfect moset O of L, a moset
M of S and any embeddings f1 ∈W (O,M), f2 ∈W (f(O),M) we have

f ∈W (L, S) if and only if f2ff
−1
1 ∈WM(f1(O),M).

Let Φ ⊂ S be a projective enhanced basis containing M . We give an algorithm to
determine which f ∈ I(L,Φ) belong to W (L,Φ). By Proposition 3.3, it is sufficient
for every orthogonal subset O ⊂ Φ to construct an embedding f ∈W (O,M).

Let O ⊂ Φ be an orthogonal subset, O2 = O ∩M and O1 = O \ O2. The set
Φ1 = ΨO2

(Φ) contains O1 and M1 = M ∩ Φ1.

Proposition 3.4. There is a subsystem S1 ⊂ S such that Φ1 is its enhanced basis
and M1 is its moset.
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Proof. For a singleton O2 this is clear from Figure 2. For any O2, we apply induction
in |O2|.

Proposition 3.4 reduces the case of any O to O disjoint from M . It is clear from
Figure 2 that Φ \ M is an orthogonal set. Therefore it is sufficient to find f for
O = Φ \M . In Table 5 we use labels on Figure 2 to describe f(a) for every a ∈ O.

Table 5: Embeddings f for irreducible S

S : A2m or A2m+1 D2m D2m+1

a ∈ O : 2, 4, . . . , 2m 2, 4, . . . , 2m− 2 2, 4, . . . , 2m
f(a) : 1, 3, . . . , 2m− 1 1, 3, . . . , 2m− 3 1, 3, . . . , 2m− 1

S : E6 E7 E8

a ∈ O : 1, 4, 6, ℓ2 1, 4, 6, ℓ2 1, 4, 6, 8, ℓ2, ℓ6, ℓ7, ℓ8
f(a) : 3, ℓ1, 5, 2 3, ℓ1, 5, 2 3, ℓ1, 5, ℓ5, 2, ℓ4, 7, ℓ3

To get this table we use Proposition 2.7. We note that, for A2m, E6, E8, f is
induced by an automorphism of Φ which is induced by a w ∈ W . For the rest of
irreducible S we find an enhanced basis Φ̃ ⊂ Φ of a subsystem S̃ of S such that
O ⊂ Φ̃ and Φ̃ \O is a moset of S̃. Values of Φ̃ are described in the following table:

Table 6: Set Φ̃

S : A2m+1 D2m D2m+1 E7

Φ̃ : {1, 2, . . . , 2m} {1, 2, . . . , 2m− 2} {1, 2, . . . , 2m} {1, 2, 3, 4, 5, 6, ℓ1, ℓ2}

Example 3.2. We use diagram ∆(E8) on Figure 2 (representing an enhanced basis
Φ) to define a Π-system L of type A7 and its embedding f into Φ such that f is in
I(L,Φ) but not in W (L,Φ). Recall that boldfaced nodes represent a moset M for
E8. We put

L = {2, 4, 5, 6, 7, 8, ℓ5}, f(L) = {3, 1, ℓ1, ℓ2, 2, ℓ7, ℓ5}, O = {2, 5, 7, ℓ5}.

Since O and f(O) have different parity, f 6∈ WM(O,M). By Proposition 3.3 applied
to f1 = f2 = Id, f 6∈W (L,Φ).

Example 3.3. Now we define L ∈ P(E7) of type A3 + A1 and its embedding f into Φ
of class W (L,Φ). We take

L = {7, 6, ℓ3, 4}, f(L) = {1, 3, 4, 6}, O = {7, ℓ3, 4}.

By applying Proposition 3.4 and Table 5, we find f1 ∈W (O,M) with image {7, ℓ3, 5}
and f2 ∈W (f(O),M) with image {3, ℓ1, 5}. Since f1(O) and f2(f(O)) have the same
parity, f2ff

−1
1 ∈ W (f1(O),M) by Theorem 3.4. Finally, Proposition 3.3 implies

f ∈W (L,Φ).

Remark 3.3. It can be shown that every projective Π-system in S is conjugate to a
L ⊂ Φ with O ⊂M .
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4 Classification theorems

If X, Y are root sets or projective root sets, then we write X ≃ Y if they are isomor-
phic and X ∼ Y if they are conjugate.

Definition 4.1. A Π-system Λ ⊂ Σ is called normal, if Λ ≃ Λ′ implies Λ ∼ Λ′ for
every Λ′ ∈ P. Otherwise Λ is called special.

Definition 4.2. The significant part of a Π-system Λ ⊂ Σ is the union of all its
irreducible components of types A2m−1. We call Λ significant if it coincides with its
significant part.

Note that every significant Π-system contains a unique perfect moset. It is in-
significant if at least one of its irreducible component is not of type A2m−1.

In this section we prove the following theorems.

Theorem 4.1. Two Π-systems in an irreducible Σ are conjugate if and only if their
significant parts are conjugate.

Theorem 4.2. All special Π-systems in an irreducible Σ are significant unless Σ is
of type Dn with n ≥ 7.

Theorem 4.3. Suppose an irreducible Σ is not of type Dn, n ≥ 7. Then two signifi-
cant Π-systems in Σ are conjugate if and only if their perfect mosets are conjugate.

To be able to refer to Lemmas 3.1 and 3.2, we prove these theorems restated in
terms of projective root systems S and embeddings f ∈ I(L, S).

4.1 Proof of Theorem 4.1

4.1.A. Suppose an irreducible insignificant L ∈ P is not of type D2m. Then
I(L, S) = W (L, S).

Proof. For L = A2m this follows from Example 3.1.

If L 6= A2m, then it is of type D2m+1 with m > 1 or Em with m = 6, 7, 8. We use an
induction in |L|. Let Le be obtained by eliminating from L an end e. By excluding
from consideration one of three ends in each L, 15 we obtain an insignificant Le 6= D2m,
and, by induction assumption, f ′ = wf |Le = Id for some w ∈ W . If 〈f ′(e)|e〉 6= 0,
then the diagram of Le ∪ {e, f ′(e)} is acyclic and, by Proposition 2.1, it must be on
Figure 1. With our selection of e, this is not the case. Hence 〈f ′(e)|e〉 6= 0 and, by
Lemma 3.2, f ′ and f are in W (L, S).

4.1.B. If L ∈ P is of type D2m and if f ∈ I(L, S), then fs ∈ W (L, S) for an
automorphism s of L.

15In notation of Figure 1, these are 2m for D2m+1, 1 for E7 and 2 for E6 and E8.
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Proof. Let e1 and e2 be ends of L such that L̃ = L \ {e1, e2} is of type A2m−2. By
4.1.A, we may assume f |eL

= Id. The set E = {e1, e2, f(e1), f(e2)} is not orthogonal.

Indeed, otherwise an acyclic diagram of L̃ ∪E would have 5 ends, which contradicts
Proposition 2.1. Without loss of generality, we assume 〈e2|f(e2)〉 6= 0 or 〈e2|f(e1)〉 6=

0. In any case, there is a q ∈ AutL, trivial on L̃, such that 〈e2|fq(e2)〉 6= 0. By
Lemma 3.2, wfq|L1

= Id for L1 = L \ {e1} and a w ∈W .

Set f ′ = wfq. If 〈f ′(e1)|e1〉 6= 0, then f ′ ∈ W (L, S) by Lemma 3.2. Hence fs ∈

W (L, S) for s = q. Case 〈f ′(e1)|e1〉 = 0 is possible only if m = 2. Then L̂ =
L∪ {f ′(e1)} is the extended projective Π-system and there is a w′ ∈WbL transposing
e1 and f ′(e1) and preserving L1. Hence w′f ′(L) = L and w′f ′ induces on L an
automorphism q1, and 4.1.B holds for s = qq−1

1 .

Proposition 4.1. Suppose A is the significant part of L ∈ P and f(A) ∼ A. Then
fs ∈ W (L, S) for an automorphism s of L preserving each irreducible insignificant
component and trivial on all of them not of type D2m.

Proof. We use induction in the number of irreducible insignificant components of L.
Let Q be one of them. Put L′ = L \ Q. Suppose f |L′ = Id. Let O′ be a perfect
moset of L′. Then Q and f(Q) are irreducible insignificant Π-systems in irreducible
projective root system S ′ = ΘO′(S). There is an automorphism q of Q such that
w′f ′q = Id where f ′ = f |Q and w′ ∈ W . Extend q trivially to an automorphism s
of L, and set f ′′ = w′fs. If O ⊃ O′ is a perfect moset of L, we have f ′′|O = Id. By
Theorem 3.1, f ′′ ∈W (L, S), hence fs ∈W (L, S).

4.2 Proof of Theorem 4.2

We deal with the class S of all irreducible projective ADE systems S except Dn, n ≥ 7.
Set A to be the class of projective ADE root systems having all special Π-systems
significant. In order to prove Theorem 4.2, we have to show S ⊂ A. We use the
following propositions.

Proposition 4.2. Suppose L ⊂ S is a significant Π-system with the perfect moset O
and f ∈ I(L, S). Let L1 ⊂ L be an irreducible component with the perfect moset O1

and L2 = L \ L1. The following statements are equivalent:

(1) there is a w ∈W such that wf(L) = L and wf(L1) = L1;

(2) there is a w′ ∈W such that w′f(L2) = L2 and w′f(O1) = O1.

Proof. (1) ⇒ (2) with w′ = w. Suppose that (2) holds. By substituting w′f for f
we can assume that f(L2) = L2 and f(O1) = O1. Denote by O2 the perfect moset of
L2. Note S1 = ΨO2

(S) contains L1 and f(L1). (Indeed, f(L1) ⊥ f(L2) = L2 ⊃ O2.)
Since L1 = Ak, by Theorem 3.2, there is a w1 ∈ W (S1) such that w1f = Id on O1

(and w1 = Id on O2). Let h be an automorphism of L such that h = Id on L1 and
fh = Id on L2. Then we have w1fh = Id on O1 and O2, and therefore w1fh = Id on
O = O1∪O2. By Theorem 3.1, w1fh = w2 on L, where w2 ∈W . We put w = w−1

2 w1.
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Note that wfh = Id onL and w = Id = hf on L2. Therefore wf(L) = wfh(L) = L
and wf(L1) = wfh(L1) = L1.

Proposition 4.3. If S is irreducible and Ψa(S) ∈ A for all a ∈ S, then S ∈ A.

Proof. Assuming that Ψa(S) ∈ A for all a ∈ S we check that, if L ∈ P(S) has the
significant part A 6= L, then f(L) ∼ L for all f ∈ I(L, S). This follows from Theorem
4.1 if A = ∅.

If A is non-trivial, then we consider its irreducible component A1 of minimal rank
and an end e in A1. Replacing f by wf , w ∈ W , we can assume f(e) = e. Π-system

L̃ = Ψe(L) in S̃ = Ψe(S) is insignificant. Hence, by our assumption, f(L̃) = w̃(L̃) for

a w̃ ∈ W (S̃). The irreducible component Ã1 = Ψe(A1) of L̃ has the smallest rank,
and therefore is preserved by w̃. Then w̃ preserves A \ A1 and the perfect moset of
A1. By Proposition 4.2, f(L) ∼ L.

Denote by S1 the class S augmented by reducible types A2 + A1, A3 + A1 and
D4 + A1 and by all orthogonal types kA1, k ≥ 1.

4.2.A. If S ∈ S1, then Ψa(S) ∈ S1 for all a ∈ S. This follows immediately from
Table 2.

4.2.B. Any reducible S ∈ S1 belongs to A.

Proof. The statement is trivial for orthogonal S. Suppose S = A2 + A1, A3 + A1 or
D4 + A1 and let L ∈ P(S) be insignificant. If L is irreducible, then L must belong
to a unique irreducible component of S not of type A1, and it is normal by Theorem
4.1. If L is reducible, then L ⊃ L̃ where L̃ is of type A2 + A1. [A2 is a subset of
an irreducible component of L and A1 is contained in another component of L.] But

none of A2, A3, D4 contains A2 + A1, hence the singleton in L̃ coincides with that
in S. On the other hand, A2 is a maximal proper insignificant Π-system in A3 and D4.
Hence L = L̃ and the statement follows from normality of A2.

Proof of Theorem 4.2. We will prove that S1 ⊂ A.16 We use induction in rank of
S ∈ S1. In case of reducible S we have S ∈ A by 4.2.B. If S is irreducible, we use
Proposition 4.3 and 4.2.A.

4.3 Proof of Theorem 4.3

Theorem 4.3 is equivalent to the statement:

Proposition 4.4. Let S ∈ S, L ∈ P(S) and f ∈ I(L, S). If f(O) = O for a perfect
moset O of L, then f(L) ∼ L.

Proposition 4.4 is trivial if L is normal and it follows from Theorem 3.1 if WO =
S(O). By Theorem 3.2, it remains to prove it for a special L and S of type D4, D5,
D6, E7, E8. By Theorem 4.2, L is significant. In the proof we use two lemmas.

16In fact, S1 = A. We do not use this fact.
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Lemma 4.1. If L ∈ P(S) is of type 2A3, then there exists a w ∈ W transposing the
irreducible components of L.

Proof. Only D6, E7 and E8 contain such L. We have |O| = 4. Let GO be the
group of transformations of O induced by WO. It follows from Theorem 3.1 that if
GO = S(O) ≃ S4, then I(L, S) = W (L, S). For S = E8, by Corollary 3.4, GO ≃ S4.
Corollary 3.2 implies that, in the case of E7, GO is isomorphic either to S4 or to S3.
However we deduce from Proposition 2.7 (applied to Φ of type 2A3) that GO contains
a subgroup isomorphic to F2 × F2. Hence GO ≃ S4.

A unique subdiagram of type 2A3 of diagram ∆(D6) is {1, 2, 1′, 5, 4, 5′} (in notation
of Figure 2). Hence, O = {1, 1′, 5, 5′}. Let f be an automorphism of L inducing on
O transpositions of 1 with 5 and of 1′ with 5′. By Theorem 3.3, f ∈W (L, S).

Denote by S2 the class of projective root systems S = S0 +S1, where S0 ∈ S and
S1 is of type kA1. Note that Ψa(S) ∈ S2 if S ∈ S2, for all a ∈ S.

Lemma 4.2. Let S ∈ S2, L ∈ P(S) have type A3 + kA1, f ∈ I(L, S). If f(O) = O
for a perfect moset O of L, then f(L) ∼ L.

Proof. Denote by L1 ⊂ L the irreducible component of type A3. By Proposition 4.2,
it suffices to find a w ∈ W such that wf(O) = O and wf(O1) = O1 where O1 is the
perfect moset of L1.

Put
Q = L1 ∪ f(L1), I = Q ∩O, J = O \ I.

Note that Q ⊥ J . Since Q does not contain any singleton, it belongs to a unique
irreducible component S̃ of ΨJ(S) (see 3.2.G).

Put K = O1 ∩ f(O1). If |K| = 0, then |O1 ∪ f(O1)| = 4, |Q| = 5 or 6 and Q

is an acyclic set of type 2A3, D̂4 or D̂5. In the first case, by Lemma 4.1, there is a
w ∈ W (S̃) that transposes L1 and f(L1). We have w(O) = O, wf(L1) = L1 and
wf(O1) = O1. For the rest of cases O is a moset of a subsystem of type D4 or D5,
and Theorem 3.3 implies wf(O1) = O1 for some w ∈WO.

If |K| = 2, then f(O1) = O1 and we take w = Id.
Finally, if |K| = 1, then f(O1) ∩ O1 is a singleton {a}. By Theorem 3.2, applied

to A3, we can assume that f(a) = a. Let O1 = {a, b}. Then I = {a, b, c} where

c = f(b). We consider w1, w2 ∈ W (S̃)I transposing respectively a with b and a with
c. Hence wf(O) = O and wf(O1) = O1, where w = w1w2.

Proof of Proposition 4.4. By induction in |L|, we prove a more general statement:
if S ∈ S2, then for every irreducible component L1 ⊂ L not of type A1 there is a
w1 ∈W such that w1f(L) = L and w1f(L1) = L1.

This is trivial for L = kA1. Case L = A3 + kA1 follows from Lemma 4.2. For
the rest of types we consider an irreducible component L1 6= A1 and we choose its
end e and take L′

1 ⊂ L1 of type A3 that contains e. Since L′ = L′

1 ∪ O is of type
A3 + kA1, we conclude from Lemma 4.2 that wf(L′) = L′ for some w ∈ W . Hence
wf(L′

1) = L′

1 and wf(O) = O. By Theorem 3.2, applied to A3, we can choose w such
that wf(e) = e.
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Put S̃ = Ψe(S), L̃ = Ψe(L), L̃1 = Ψe(L1). We have L̃, wf(L̃) ⊂ S̃ ∈ S2. If

L̃1 6= A1, then by induction, there is a w1 ∈ W (S̃) such that w1wf(L̃) = L̃ and

w1wf(L̃1) = L̃1. In particular, w1wf preserves L \ L1 and the perfect moset of L1.
By Proposition 4.2, w2w1wf(L) = L and w2w1wf(L1) = L1 for a w2 ∈W .

Finally, suppose L̃1 = A1. Then L1 = L′

1 has type A3 and wf(L1) = L1. Set
O1 to be the perfect moset of L1, L2 = L \ L1 and S1 = ΨO1

(S) ∈ S2. Since wf
preserves the perfect moset of L2, we obtain by induction that w1wf(L2) = L2 for
a w1 ∈ W (S1). Since w1wf(O1) = O1, Proposition 4.2 implies the existence of a
w2 ∈W such that w2w1wf(L) = L and w2w1wf(L1) = L1.

4.4 Description of Weyl orbits

To classify Weyl orbits in P(S) we consider subdiagrams L of ∆(S) representing
elements of P(S) and we investigate which of them are normal and which of isomorphic
special Π-diagrams are conjugate. The general case can be easily reduced to the case
of irreducible S. For S = An and E6 a solution is given by:

Theorem 4.4. All Π-systems in An and E6 are normal.

This follows from Theorems 3.1 and 3.2.

4.4.1 Case of Dn

In the case of Dn, we call a Π-diagram17 L ⊂ ∆(Dn) thin if it contains no pair {i, i′},
and we call it thick if it is not thin. Thick diagrams of type 2A1 are conjugate and
the same is true for type A3. We call them D2- and D3-diagrams. The number of Di-
subdiagrams of L is denoted by δi = δi(L). We call (δ2, δ3) the tag of L. We denote
by ω(L) and we call the width of a diagram L the minimal value of k such that L is
contained in ∆(Dk). Thin significant diagrams of width n are called distinguished .
Such diagrams exist only if n is even.

Theorem 4.5. Every class of isomorphic distinguished diagrams consists of two W-
orbits transformed into each other by any automorphism τi of ∆(Dn) transposing i
and i′ and not moving the rest of nodes. In all other cases isomorphic Π-diagrams
are conjugate if and only if they have the same tag.

Since subdiagrams of any L ⊂ P(Dn) of classes D2 and D3 are contained in the
significant part A of L, the tags of L and A coincide. Besides, all distinguished
diagrams are significant. By Theorem 4.1, it is sufficient to prove Theorem 4.5 for
significant L.

4.4.A. Let N = N1 ∪ N2 be the partition of the set N = {1, 2, 3, . . . , 2m− 1} into
odd and even numbers. Every distinguished subdiagram of ∆(D2m) corresponds to a
pair (I, J), where I ⊂ N1 and J ⊂ N2, by the formula

LJ
I = τI(N \ J),

17By a Π-diagram we mean a Dynkin subdiagram of ∆(Σ).
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where τI =
∏

i∈I τi. Diagrams LJ1

I1
and LJ2

I2
are isomorphic if J1 = J2, and they are

conjugate if and only if, in addition, |I1| and |I2| are both odd or both even.

This follows from Theorem 3.3.

4.4.B. Not distinguished significant Π-diagrams are conjugate if and only if they
have the same tag.

Proof. Suppose L′ = w(L) where w ∈W . Then L and L′ have the same tag because
W preserves the types of connected components of a Π-diagram and it preserves the
classes of thin and thick diagrams.

On the other hand, if isomorphic L and L′ have the same tag, then it is possible
to establish a 1-1 correspondence between their components of each class D2, D3

and between the thin connected components of each type A2i−1. We get this way
an isomorphism f : L → L′. We can choose f such that the restriction of f to
the perfect moset of L coincides with a permutation of columns in the matrix (3.1).
This permutation belongs to W by Theorem 3.3. By Theorem 3.1, f ∈ W and
L ∼ f(L) = L′.

4.4.2 Case of E7

We define the parity of L ∈ P(S) as the parity of its perfect moset O. Note that the
parity does not depend on the choice of L within one Weyl orbit. The same is true
for |O| which we call the charge of L.

Theorem 4.6. In the case of E7 every special orbit belongs to one of three types

A5, A3 + A1, 3A1 (4.1)

with charge 3 or to one of types

A5 + A1, A3 + 2A1, 4A1 (4.2)

with charge 4. Each of these types consists of two Weyl orbits: one with parity 0 and
the other with parity 1.

Remark 4.1. Both orbits of charge 3 can be represented by distinguished subdiagrams
of any D6-subdiagram of ∆(E7) (for instance, of L = {2, 3, 4, 5, 6, 7}). A similar
representation, with D6 +A1 (for instance, L+{ℓ4}) substituted for L, is possible for
orbits of charge 4.

By Theorem 4.2 every special L is significant and therefore it has a unique moset O.
By Theorem 4.3 and by Proposition 3.2, Weyl orbits are in a 1-1 correspondence with
the core orbits. We conclude from Corollary 3.1 that all special Π-systems L have
charge 3 or 4 and that the class of all isomorphic special L consists of two W -orbits:
one with parity 0, the other with parity 1. All significant types with charge 3 are
3A1, A3 + A1, A5.
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All significant types with charge 4 are 4A1, A3 + 2A1, A5 +A1, 2A3, A7. But the
latter two types are normal. Indeed, in these cases the group of transformations of
O induced by WO contains a subgroup isomorphic to F2 × F2. Then by Corollary 3.2
the parity of L must be 0 and therefore L is normal. We arrive to the list of six types
presented in Table 7.

Table 7: Special Weyl orbits for E7

Type Parity 0 Parity 1

3A1 {2} + {5} + {7} {3} + {5} + {7}
A3 + A1 {5, 6, 7} + {2} {5, 6, 7}+ {3}
A5 {2, 4, 5, 6, 7} {3, 4, 5, 6, 7}
4A1 {3} + {5} + {7} + {ℓ4} {2} + {5} + {7} + {ℓ4}

A3 + 2A1 {5, 6, 7} + {3} + {ℓ4} {5, 6, 7}+ {2} + {ℓ4}
A5 + A1 {3, 4, 5, 6, 7}+ {ℓ4} {2, 4, 5, 6, 7}+ {ℓ4}

4.4.3 Case of E8

Theorem 4.7. All special L ∈ P(E8) belong to one of five types

A7, A5 + A1, 2A3, A3 + 2A1, 4A1 (4.3)

with charge 4. To each of these types there correspond two Weyl orbits: one with
parity 0 and the other with parity 1.18

Theorems 4.2, 4.3 and Corollary 3.3 imply that all special L are significant and
every special type is represented by two Weyl orbits with charge 4 and different
parities.

Every significant L with charge 4 belongs to one of types 4A1, A3 + 2A1, 2A3,
A5 + A1 and A7. These types are special which follows from Table 8.

Table 8: Special Weyl orbits for E8

Type Parity 0 Parity 1

4A1 {2} + {5} + {7} + {ℓ5} {3} + {5} + {7} + {ℓ5}
A3 + 2A1 {7, 8, ℓ5} + {5} + {2} {7, 8, ℓ5} + {5} + {3}

2A3 {7, 8, ℓ5} + {2, 4, 5} {7, 8, ℓ5} + {3, 4, 5}
A5 + A1 {5, 6, 7, 8, ℓ5} + {2} {5, 6, 7, 8, ℓ5} + {3}
A7 {2, 4, 5, 6, 7, 8, ℓ5} {3, 4, 5, 6, 7, 8, ℓ5}

18Both orbits can be represented by distinguished subdiagrams of any D8-subdiagram of ∆(E8)
(for instance, of L = {2, 3, 4, 5, 6, 7, 8, ℓ5}).
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4.5 Order between W -orbits

If Σ is the root system of an algebra g, then a partial order between conjugacy classes
of subalgebras defined in the Introduction can be investigated in terms of an order
between W-orbits in P(Σ). Theorems 4.5, 4.6, 4.7 allow to determine if O1 ≺ O2 for
any pair of orbits.

Every normal orbit is determined by its type. For special orbits we use additional
labels. For instance, we label twelve special orbits in P(E7) represented on Table 7
by a combination of their types and parities (indicated by a superscript 0 or 1 at a
type symbol). E. g., writing [A5 + A1]

0 means type A5 + A1 and parity 0. Partial
order between the corresponding orbits [which follows immediately from Table 7] is
demonstrated by the following graph where an arrow is directed from label of O2 to
label of O1 if O1 ≺ O2.

Order between special orbits for E7

[A5 + A1]
0 −−−→ [A3 + 2A1]

0 −−−→ [4A1]
0

y
y

y
[A5]

1 −−−→ [A3 + A1]
1 −−−→ [3A1]

1

x
x

[A5 + A1]
1 −−−→ [A3 + 2A1]

1 −−−→ [4A1]
1

y
y

y
[A5]

0 −−−→ [A3 + A1]
0 −−−→ [3A1]

0

A similar directed graph for E8 consists of two isomorphic connected components.
Labels in each component are of the same parity.

Order between special orbits for E8 (i = 0 or 1)

[A7]
i −−−→ [2A3]

i

y
y

[A5 + A1]
i −−−→ [A3 + 2A1]

i −−−→ [4A1]
i

Analogous graphs can be easily drawn for Dn with not too big n.
For any ADE system and normal O1, O2, a relation O1 ≺ O2 holds if and only if

the Dynkin diagram of O1 is a subdiagram of the enhanced Dynkin diagram of O2.
This criterion works also in the case of a special O2 and normal O1.

It remains to consider the case of special O1 and normal O2. We illustrate an
approach to this case on the following example. Suppose Σ = E8 and labels of
O1 and O2 are [4A1]

0 and E6. Subdiagram {2, 3, ℓ1, ℓ2} of ∆(E6) has parity 0 as a
subdiagram of ∆(E8). Therefore O1 ≺ O2. On the other hand, O′

1 with label [4A1]
1

is not comparable with O2 because 4A1 is normal in E6 and therefore its parity in E8

is 0.
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A Appendix

A.1 Basic facts

A finite set Σ of nonzero vectors in a Euclidean space V is called a root system if:

(1) Σ spans V ;

(2) for every α, β ∈ Σ,

(α|β) =
2(α, β)

(β, β)

is an integer;

(3) for every α, β ∈ Σ,
sβ(α) = α− (α|β)β ∈ Σ;

(4) for every α ∈ Σ, kα 6∈ Σ for all k 6= ±1.

Condition (4) not always is a part of the definition of root systems (see, e.g.,[Ser01]).
What we call a root system, many authors call a reduced root system.

The Weyl group W of Σ is a subgroup of S(Σ) generated by all sα, α ∈ Σ. An
automorphism of X ⊂ Σ is an element of S(X) preserving the inner product (·, ·).
We have W ⊂ Aut(Σ). A basis of Σ is a subset Π ⊂ Σ such that every α ∈ Σ
has a unique presentation

∑
γ∈Π kγγ, where all kγ are non-negative integers or all

non-positive. Any root system contains a basis.
Let Σ be a root system and W its Weyl group. We say that X, Y ⊂ Σ are

conjugate, if w(X) = Y for some w ∈W .

Proposition A.1. All bases of Σ are conjugate ([Hum90, Theorem 1.4]).

Proposition A.2. If Σ is irreducible, then all roots of Σ having the same length are
conjugate ([Bou02, Chapter VI, Proposition 11]).

Proposition A.3. If w(α) = α, where α ∈ Σ and w ∈ W , then there are roots
α1, α2, . . . , αk orthogonal to α, such that w = sα1

sα2
· · · sαk

([Hum90, Theorem 1.12]).

Proposition A.4. Let Π ⊂ Σ be a basis. All automorphisms of Π extend uniquely
to automorphisms of Σ, forming a subgroup A ⊂ Aut Σ. The group Aut(Σ) is a
semidirect product of A and the normal subgroup W ([Dyn51, Theorem 1]).

Proposition A.5. If Σ is irreducible not of type D2n, n ≥ 2, then Aut Σ is generated
by W and − Id ([Dyn51, Lemma 5] or [Dyn52a, Theorem 0.16]).

Proposition A.6. Suppose Λ is an extended basis of an irreducible Σ. If Λ \ {α}
and Λ \ {β} are bases, then w(Λ) = Λ and w(α) = β for some w ∈W .

This follows from the list of automorphisms for extended Dynkin diagrams and
Proposition A.4.
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A.2 Notation Index

Aut(X): group of automorphisms of X
f |X : restriction of a map f to X
GX : subgroup {g ∈ G : g(X) = X} of a group G
Id: identity map
I(X,Σ): set of all embeddings of X into Σ
p(α): projective root (α,−α) corresponding to a root α
P: set of all Π-systems (in Σ or in S)
S : projective root system
S(X): group of all permutations on a finite set X
W : Weyl group
W (X,Σ): set of all f ∈ I(X,Σ) such that f |X = w|X for some w ∈W
ΓX : diagram of X
∆X : projective diagram of X
∆(Σ): enhanced Dynkin diagram of Σ
ΘX(Σ): irreducible component of ΨX(Σ) not of type A1; ∅ if there is no such a
component
Σ : root system
ΨX(Λ): orthogonal complement of X in Λ

Λ̂: extended Π-system for an irreducible Π-system Λ
X: completion of X
|X|: cardinality of X
X ≃ Y : isomorphic X and Y
X ∼ Y : conjugate X and Y
(α, β): entries 2(α,β)

(β,β)
of Cartan matrix

〈a|b〉: |(α|β)| for every a = (α,−α), b = (β,−β)
⊥: orthogonal (with respect to (·|·) or to 〈·|·〉)
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