
Lec 10: Elementary matrices and their products

Any elementary row transformation of a matrix A can be represented by a square
matrix E such that applying this transformation to A is the same as multiplying A
by E from the left: EA. Consider some examples. Take 3× 4 matrix

A =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34




and interchange its first and second rows. We get

B = Ar1↔r2 =




a21 a22 a23 a24

a11 a12 a13 a14

a31 a32 a33 a34


 .

Now notice that B = EA for some matrix E:




a21 a22 a23 a24

a11 a12 a13 a14

a31 a32 a33 a34


 =




0 1 0
1 0 0
0 0 1







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 .

We see that interchanging of the first and second rows can be represented by matrix

E =




0 1 0
1 0 0
0 0 1


. Similarly, interchanging of top and bottom rows is represented by

matrix




0 0 1
0 1 0
1 0 0


:




0 0 1
0 1 0
1 0 0







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 =




a31 a32 a33 a34

a21 a22 a23 a24

a11 a12 a13 a14


 .

Relation



1 0 0
0 r 0
0 0 1







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 =




a11 a12 a13 a14

ra21 ra22 ra23 ra24

a31 a32 a33 a34




shows that the scalar multiplication by r of the second row is represented by matrix


1 0 0
0 r 0
0 0 1


. What about the third type elementary row transformations? Say, adding

c times top row to the second one? Here we go:



1 0 0
c 1 0
0 0 1







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 =




a11 a12 a13 a14

ca11 + a21 ca12 + a22 ca13 + a23 ca14 + a24

a31 a32 a33 a34


 .
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So, this transformation is represented by matrix




1 0 0
c 1 0
0 0 1


. Matrix




1 0 c
0 1 0
0 0 1


 cor-

responds to adding c times third row to the first one. Indeed,




1 0 c
0 1 0
0 0 1







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 =




ca31 + a11 ca32 + a12 ca33 + a13 ca34 + a14

a21 a22 a23 a24

a31 a32 a33 a34


 .

All these matrices corresponding to elementary row transformations are called
elementary matrices. Similarly they can be described for any m× n matrix A. Note
that elementary matrices are all square of order m. Moreover, they are all invertible.
[This is because elementary transformations are invertible.] For elementary matrices
above we have (verify!):




0 1 0
1 0 0
0 0 1



−1

=




0 1 0
1 0 0
0 0 1


 ,




1 0 0
0 r 0
0 0 1



−1

=




1 0 0
0 r−1 0
0 0 1


 ,




1 0 0
c 1 0
0 0 1



−1

=




1 0 0
−c 1 0

0 0 1


 .

If a matrix B is obtained from A by an elementary row transformation (ERT),
then, as we already know, B = E1A for some elementary matrix E1. Now if C is
obtained from B by an ERT, then C = E2B for some E2. Therefore C = E2B =
E2(E1A) = (E2E1)A. We see that a composition of ERTs is represented by the
product of corresponding elementary matrices (in the reverse order). In general,
if B is obtained from A be a sequence of ERT with matrices E1, E2, . . . , Ek, then
B = (EkEk−1 · · ·E1)A.

Now, we know that any matrix A can be transformed by a sequence of ERT to
a matrix B in a reduced row echelon form (RREF). Then B = EA where E is a
product of elementary matrices. In particular, E is invertible. If A is invertible, then
so is B as a product of two invertible matrices. But a matrix in a RREF is invertible
if and only if it is the identity matrix In (why?). So it must be EA = B = In. Then
E is an inverse of A. Thus we have proved

Theorem. An n× n matrix is invertible if and only if its reduced row echelon form
is identity matrix In.
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