Lec 10: Elementary matrices and their products

Any elementary row transformation of a matrix A can be represented by a square matrix E such that applying this transformation to A is the same as multiplying A by E from the left: $E A$. Consider some examples. Take 3×4 matrix

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

and interchange its first and second rows. We get

$$
B=A_{r_{1} \leftrightarrow r_{2}}=\left[\begin{array}{cccc}
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] .
$$

Now notice that $B=E A$ for some matrix E :

$$
\left[\begin{array}{llll}
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] .
$$

We see that interchanging of the first and second rows can be represented by matrix $E=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Similarly, interchanging of top and bottom rows is represented by $\operatorname{matrix}\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$:

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{llll}
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right] .
$$

Relation

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & r & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{rrrr}
a_{11} & a_{12} & a_{13} & a_{14} \\
r a_{21} & r a_{22} & r a_{23} & r a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

shows that the scalar multiplication by r of the second row is represented by matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & 1\end{array}\right]$. What about the third type elementary row transformations? Say, adding c times top row to the second one? Here we go:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
c & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{rrrr}
a_{11} & a_{12} & a_{13} & a_{14} \\
c a_{11}+a_{21} & c a_{12}+a_{22} & c a_{13}+a_{23} & c a_{14}+a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] .
$$

So, this transformation is represented by matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ c & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Matrix $\left[\begin{array}{lll}1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ corresponds to adding c times third row to the first one. Indeed,

$$
\left[\begin{array}{lll}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{rrrr}
a_{31}+a_{11} & c a_{32}+a_{12} & c a_{33}+a_{13} & c a_{34}+a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right] .
$$

All these matrices corresponding to elementary row transformations are called elementary matrices. Similarly they can be described for any $m \times n$ matrix A. Note that elementary matrices are all square of order m. Moreover, they are all invertible. [This is because elementary transformations are invertible.] For elementary matrices above we have (verify!):

$$
\begin{gathered}
{\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & r & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & r^{-1} & 0 \\
0 & 0 & 1
\end{array}\right],} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
c & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-c & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

If a matrix B is obtained from A by an elementary row transformation (ERT), then, as we already know, $B=E_{1} A$ for some elementary matrix E_{1}. Now if C is obtained from B by an ERT, then $C=E_{2} B$ for some E_{2}. Therefore $C=E_{2} B=$ $E_{2}\left(E_{1} A\right)=\left(E_{2} E_{1}\right) A$. We see that a composition of ERTs is represented by the product of corresponding elementary matrices (in the reverse order). In general, if B is obtained from A be a sequence of ERT with matrices $E_{1}, E_{2}, \ldots, E_{k}$, then $B=\left(E_{k} E_{k-1} \cdots E_{1}\right) A$.

Now, we know that any matrix A can be transformed by a sequence of ERT to a matrix B in a reduced row echelon form (RREF). Then $B=E A$ where E is a product of elementary matrices. In particular, E is invertible. If A is invertible, then so is B as a product of two invertible matrices. But a matrix in a RREF is invertible if and only if it is the identity matrix I_{n} (why?). So it must be $E A=B=I_{n}$. Then E is an inverse of A. Thus we have proved

Theorem. An $n \times n$ matrix is invertible if and only if its reduced row echelon form is identity matrix I_{n}.

