
Lec 11: Finding the inverse

We know that an elementary row transformation (ERT) can be represented by an
elementary matrix E (that is, the applying of this ERT to a matrix A gives the
product EA). An easy way to remember which E corresponds to which ERT is
simply to apply the ERT to the identity matrix In: what we obtain is EIn = E,
i. e. exactly the corresponding elementary matrix E. For instance, in case n = 3,

interchanging first and second rows of I3 gives E =




0 1 0
1 0 0
0 0 1


 , and from the last

lecture we know that this matrix represents the ERT (interchange of first and second
rows). Multiplication by 2 of the last row of I3 and subtracting 3 times the last row
of I3 from the first one produce respectively matrices

E =




1 0 0
0 1 0
0 0 2


 , E =




1 0 −3
0 1 0
0 0 1


 .

More generally, the matrix E representing the sequence of elementary row transfor-
mations with matrices E1, E2, . . . Ek, can either be found as the product EkEk−1 · · ·E1

or as application of this sequence to In. Indeed, we have Ek(Ek−1(· · ·E2(E1In))) =
(EkEk−1 · · ·E1)In = EkEk−1 · · ·E1.

Now let A be an n × n matrix. Suppose it is invertible, hence its reduced row
echelon form (RREF) is In and A−1 = EkEk−1 · · ·E1. Here, {Ei}k

i=1 is a sequence of
ERT producing RREF from A.1 This observation suggests an algorithm of finding
A−1. We adjoin the matrix In to A and so consider the partitioned matrix [A|In] (of
size n× 2n). Now apply to this matrix the sequence of ERT producing RREF from
A. Thus in the left part of the partitioned matrix we’ll get In and in the right one
EkEk−1 · · ·E1, i. e. A−1. In other words, we’ll get [In|A−1].

If we don’t know whether A is invertible, we still can apply the same algorithm to
[A|In]. Let’s transform this matrix by ERTs until we obtain the RREF of A on the
left side. If it is In, great, A is invertible and on the right side it must be A−1. If the
RREF differs from In, then we conclude that A is singular (noninvertible). The right
side of the partitioned matrix is then not so valuable.

Example. Determine whether a matrix

A =




2 −1 0
−1 2 −1

0 −1 2




1In fact, before we only showed that EA = In where E = EkEk−1 · · ·E1. But for E to be the
inverse to A we need also AE = In. To prove the latter, multiply the relation EA = In by E from
the right: EAE = E. Now, E is invertible, so let’s multiply the latter relation by E−1 from the left:
E−1EAE = E−1E, or AE = In, what was required. Hence A−1 = E.
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is invertible or not. If yes, find A−1.
Consider the partitioned matrix [A|I3]:

B =




2 −1 0 | 1 0 0
−1 2 −1 | 0 1 0

0 −1 2 | 0 0 1


 .

Apply ERTs to B which transform A to RREF:

C = B2r1→r1 =




1 −1
2

0 | 1
2

0 0
−1 2 −1 | 0 1 0

0 −1 2 | 0 0 1


 , D = Cr1+r2→r2 =




1 −1
2

0 | 1
2

0 0
0 3

2
−1 | 1

2
1 0

0 −1 2 | 0 0 1


 ,

E = D 3
2
r2→r2

=




1 −1
2

0 | 1
2

0 0
0 1 −2

3
| 1

3
2
3

0
0 −1 2 | 0 0 1


 , F = Er2+r3→r3 =




1 −1
2

0 | 1
2

0 0
0 1 −2

3
| 1

3
2
3

0
0 0 4

3
| 1

3
2
3

1


 ,

G = F 4
3
r3→r3

=




1 −1
2

0 | 1
2

0 0
0 1 −2

3
| 1

3
2
3

0
0 0 1 | 1

4
1
2

3
4


 , H = G 2

3
r3+r2→r2

=




1 −1
2

0 | 1
2

0 0
0 1 0 | 1

2
1 1

2

0 0 1 | 1
4

1
2

3
4


 ,

I = H 1
2
r2+r1→r1

=




1 0 0 | 3
4

1
2

1
4

0 1 0 | 1
2

1 1
2

0 0 1 | 1
4

1
2

3
4


 .

We see that RREF of A is I3, so A is invertible and

A−1 =




3
4

1
2

1
4

1
2

1 1
2

1
4

1
2

3
4


 .

Note that an n × n matrix B having a row of zeros is singular. Hence if B is
obtained from A by a sequence of ERT, then A must be singular. Indeed, B = EA
(where E is a product of elementary matrices) and invertibility of A would imply
that of B (as the product of invertible matrices). But B is singular, therefore A is
singular. In particular, if in the process of finding A−1 from [A|In] we get [B|C] where
B has a zero row, we can stop and say that A is singular. [Then there is no need to
continue transforming A to RREF.]

Example. Determine whether the matrix

A =




1 2 3
2 3 1
0 1 5




is invertible or not. If yes, find A−1.
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Again we work with the partitioned matrix B = [A|I3] and apply to B the sequence
of ERT transforming A to it’s RREF.

C = B−2r1+r2→r2 =




1 2 3 | 1 0 0
0 −1 −5 | −2 1 0
0 1 5 | 0 0 1


 ,

D = Cr2+r3→r3 =




1 2 3 | 1 0 0
0 −1 −5 | −2 1 0
0 0 0 | −2 1 1


 .

Since the left submatrix of D has a zero row, A is noninvertible.

In previous classes we proved small theorems which can be included in a bigger
one.

Theorem. Let A be an n× n matrix. The following statements are equivalent:

(1) A is invertible.

(2) The linear system Ax̄ = b̄ has a unique solution for every b̄.

(3) The homogeneous system Ax̄ = 0 has only the trivial solution.

(4) The RREF of A is In.

(5) A is a product of elementary matrices.

We prove this theorem again in order to demonstrate how one can show equiv-
alence of many statements without going through all pairs of them. We will prove
implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1) and thus the equivalence of all
statements.

Consider (1) ⇒ (2) first. If A is invertible, then we can multiply by A−1 the
system Ax̄ = b̄ and get x̄ = A−1b̄. So, if the solution exists, it is unique and is equal
to A−1b̄. On the other hand, x̄ = A−1b̄ is a solution, because satisfies to the equation.
Thus we’ve proved (1) ⇒ (2). Now (2) implies (3) if we take b̄ consisting of all zeros.

Prove (3) ⇒ (4). According to the Gauss-Jordan reduction, the system Ax̄ = 0
is equivalent to A′x̄ = 0, where A′ is the RREF of A. But if A′ 6= In, A′ has a zero
row at bottom (why?), which corresponds to the equation 0xn = 0. Then xn can be
any and the system A′x̄ = 0 has infinitely many solutions. Therefore so does Ax̄ = 0.
This contradiction shows that A′ = In.

If RREF of A is In, then (EkEk−1 · · ·E1)A = In for some elementary matrices
Ei. Multiplying by E−1

1 E−1
2 · · ·E−1

k we obtain A = E−1
1 E−1

2 · · ·E−1
k . Since inverses to

elementary matrices are elementary matrices, A is a product of elementary matrices,
and we have the implication (4) ⇒ (5) proved. Finally, implication (5) ⇒ (1) follows
from the fact that a product of invertible matrices is invertible.
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