
Lec 12: Elementary column transformations and equivalent matrices

Like ERT, one can define elementary column transformations (ECT). These are:

• Interchanging two columns.

• Multiplying a column by a nonzero scalar.

• Adding a multiple of a column to another column.

Using familiar arguments, one can show that any matrix can be transformed to a
column echelon form (CEF) by sequence of ECT. We say that a matrix is in CEF, if

• All zero columns are on the right.

• The first (if we go down from the top) nonzero entry in each column is 1 (the
leading one of the column).

• If j > i, then the leading one of the column cj appears below that of ci.

The following matrices are in CEF:



1 0 0
0 1 0
3 2 0


 ,




0 0
1 0
2 1


 ,

[
0 0 0
1 0 0

]
,

and these are not in CEF (why?):




1 0 0
0 0 1
3 0 0


 ,




0 0
1 0
0 2


 ,

[
0 1 0
1 0 0

]
,

[
1 1
0 2

]
.

A matrix is in a reduced column echelon form (RCEF) if it is in CEF and, additionally,
any row containing the leading one of a column consists of all zeros except this leading
one. In examples of matrices in CEF above, first and third matrices are in RCEF, and
the second is not. Like row case, one can produce (a unique) RCEF for any matrix.

Important note. Applying column transformations is not allowed in solving linear
systems.1

To ECTs there correspond elementary matrices, but unlike row case, they are
multiplied from the right. That is, if B is obtained from A by an ECT, then B = AF
(not FA, as for ERT!). Matrix F is square of order n, where n is the number
of columns of A. All three types of ECT are represented by their matrices below
(interchanging first two columns, multiplying third column by r, adding c times second
column to the first one):

[
a11 a12 a13

a21 a22 a23

] 


0 1 0
1 0 0
0 0 1


 =

[
a12 a11 a13

a22 a21 a23

]
,

1Despite this note, ECTs may be useful sometimes as we’ll see later.
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[
a11 a12 a13

a21 a22 a23

] 


1 0 0
0 1 0
0 0 r


 =

[
a11 a12 ra13

a21 a22 ra23

]
,

[
a11 a12 a13

a21 a22 a23

] 


1 0 0
c 1 0
0 0 1


 =

[
a11 + ca12 a12 a13

a21 + ca22 a22 a23

]
.

The elementary matrix corresponding to ECT is the matrix obtained from the identity
matrix by this ECT. If B is obtained from A by an ECT and C is obtained from B
by an ECT, then we have B = AF1, C = BF2 = (AF1)F2 = A(F1F2). Hence, to
the sequence of ECTs with matrices F1, F2, . . . , Fk it corresponds the matrix F =
F1F2 · · ·Fk (multiplying in straight order, unlike the row case). We can find F either
by straight multiplication of Fi or by applying the sequence of ECTs to the identity
matrix In.

Now return awhile to row transformations. Matrix B is said to be row equivalent
to matrix A, if B is produced from A by a sequence of ERTs. For example, A is row
equivalent to itself (empty sequence of ERTs). Statement ”B is row equivalent to A”
means B = (Ek · · ·E2E1)A for some elementary matrices Ei. Or, what is the same,
A = (E−1

1 E−1
2 · · ·E−1

k )B. Since inverses of elementary matrices are elementary again,
A is row equivalent to B. Thus, the relation of being row equivalent is symmetric,
and instead of ”B is row equivalent to A” we can say ”A and B are row equivalent”.
[This reflects the fact that if B is produced from A by a sequence of ERTs, then
A is produced from B by a sequence of ERTs.] As we know, any matrix is row
equivalent to a matrix in REF, or a square matrix is invertible if and only of it is
row equivalent to the identity matrix. If A and B are row equivalent, and B and C
are row equivalent, then A and C are row equivalent (why?). The latter property is
called transitivity.

By analogy, B is column equivalent to A, if B is produced from A by a sequence
of ECTs. Or, what is the same, B = A(F1F2 · · ·Fk). Like above, if B is column
equivalent to A, then A is column equivalent to B. Hence we can say that A and
B are column equivalent. Any matrix is column equivalent to a matrix in CEF and
a square matrix is invertible if and only of it is column equivalent to the identity
matrix.

Now, a more general definition. Matrix B is equivalent to A, if B is obtained from
A by a sequence of ERT and ECT. This means that for some elementary matrices
E1, E2, . . . , Ek, F1, F2, . . . , Fl we have B = (Ek · · ·E2E1)A(F1F2 · · ·Fl). Then A is
equivalent to B, because after multiplying the latter relation by (E−1

1 · · ·E−1
k ) on the

left and by (F−1
l · · ·F−1

1 ) on the right, we get A = (E−1
1 · · ·E−1

k )B(F−1
l · · ·F−1

1 ). Any
matrix is equivalent to itself, and if two matrices are row (or column) equivalent, then
they are equivalent. The relation of being equivalent is transitive.

Theorem. Any m× n matrix A is equivalent to a (unique) partitioned matrix of the
form2 [

Ir Or n−r

Om−r r Om−r n−r.

]
(1)

2Okl stands for the zero k × l matrix.
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We will not prove this theorem. [Try to do it yourself3 or see the proof in the
book, p. 127. Uniqueness of the form (1) is not proved though.] Instead let’s look at
the following example.

Example. Transform the matrix

A =

[
2 4 7
1 2 3

]

to a matrix of form (1) using ERTs and ECTs.
First, let’s produce the RREF of A by ERTs:

B = Ar1↔r2 =

[
1 2 3
2 4 7

]
, C = Br2−2r1→r2 =

[
1 2 3
0 0 1

]
, D = Cr1−3r2→r1 =

[
1 2 0
0 0 1

]

Matrix D is in RREF but still not in form (1). Interchange its last two columns and
then subtract two times the first column from the last one:

G = Dc2↔c3 =

[
1 0 2
0 1 0

]
, H = Gc3−2c1→c3 =

[
1 0 0
0 1 0

]
.

Now matrix H is of the required form.

By this example we’ve shown that H = EAF where E and F are products of
elementary matrices corresponding to the ERTs and ECTs we’ve performed. Let’s
find E and F . Matrix E is the matrix obtained from I2 (I2 because A has two rows)
by the sequence of ERTs we used. Namely, r1 ↔ r2, r2− 2r1 → r2 and r1− 3r2 → r1.
Applying this sequence to the identity I2, we obtain (verify!)

E =

[−3 7
1 −2

]
.

Similarly, applying the sequence of ECTs we’ve used (i. e. c2 ↔ c3 and c3−2c1 → c3),
to matrix I3 (3 because A has three columns), we compute (verify!)

F =




1 0 −2
0 0 1
0 1 0


 .

If you like to multiply matrices, find the product EAF and make sure it coincides
with H.

Note that invertible matrix is equivalent to the identity (it is even row equivalent).
Conversely, if a matrix A is equivalent to In, it must be invertible. Indeed, A =
EInF = EF and E, F are invertible as products of elementary matrices. Thus we
have a nice way to check whether a matrix A is invertible: transform it by ERTs and
ECTs to a form (1) and see if it is the identity (if it’s not In, then A is singular).
Note that transforming A to form (1) reveals only the fact of invertibility of A but,
generally, this way can’t be used to find A−1.

3Hint: transform a matrix to RREF using ERTs and then get the form (1) by ECTs.
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