Lec 15: Determinants of transformed matrices

In this lecture we will discover how determinants of A and B are related, where B is obtained from A by an elementary row transformation. We consider square matrices only. First of all, let's recall the definition of the determinant of a matrix. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. The determinant of A is

$$
\begin{equation*}
\operatorname{det}(A)=\sum(\pm) a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} \tag{1}
\end{equation*}
$$

where the summation is over all permutations $j_{1} j_{2} \ldots j_{n}$. We take the sign + before the term $a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}$ if the permutation $j_{1} j_{2} \ldots j_{n}$ is even, and - if the permutation is odd.

For example, if $n=2$, formula (1) becomes

$$
\operatorname{det}(A)=\sum(\pm) a_{1 j_{1}} a_{2 j_{2}}
$$

Since there are only two permutations on two elements, namely 12 and 21 , we have two terms in our formula, the first one with $j_{1}=1, j_{2}=2$ (corresponding to the permutation 12) and the other one with $j_{1}=2, j_{2}=1$ (permutation 21). In other words,

$$
\operatorname{det}(A)= \pm a_{11} a_{22} \pm a_{12} a_{21}
$$

Now the sign before $a_{11} a_{22}$ must be + since the permutation 12 has 0 inversions, and the sign of $a_{12} a_{21}$ is - , because the permutation 21 has 1 inversion. Thus we arrive at a familiar formula (as it was expected) for the determinant of 2×2 matrix:

$$
\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

In case $n=3$ formula (1) has a form

$$
\begin{equation*}
\operatorname{det}(A)=\sum(\pm) a_{1 j_{1}} a_{2 j_{2}} a_{3 j_{3}} . \tag{2}
\end{equation*}
$$

It contains 6 terms as there are $3!=6$ permutations on 3 elements. Namely, options for $j_{1} j_{2} j_{3}$ are $123,213,132,321,231,312$. The number of inversions is respectively $0,1,1,3,2,2$. Thus the expanded form of (2) is:

$$
\operatorname{det}(A)=a_{11} a_{22} a_{33}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}-a_{13} a_{22} a_{31}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}
$$

or, after rearranging the terms, $\operatorname{det}(A)=$
$\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}$.
Again, we recognize the formula for the determinant of a 3×3 matrix. In formula (3) we introduced another notation for $\operatorname{det}(A)$, that is a matrix bounded by vertical lines. So, in this notation, $\operatorname{det}\left(\left[a_{i j}\right]\right)=\left|a_{i j}\right|$.

Now let's apply ERTs to a matrix and see what happens to its determinant. Instead of giving general proofs, we will look at illuminating examples. Take an arbitrary 3×3 matrix, interchange its first two rows and compute its determinant:

$$
\begin{gathered}
\operatorname{det}\left(A_{r_{1} \hookleftarrow r_{2}}\right)=\left|\begin{array}{ccc}
a_{21} & a_{22} & a_{23} \\
a_{11} & a_{12} & a_{13} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|= \\
a_{21} a_{12} a_{33}+a_{22} a_{13} a_{31}+a_{23} a_{11} a_{32}-a_{23} a_{12} a_{31}-a_{21} a_{13} a_{32}-a_{22} a_{11} a_{33} .
\end{gathered}
$$

Comparing this with formula (3), we see that $\operatorname{det}\left(A_{r_{1} \leftrightarrow r_{2}}\right)=-\operatorname{det}(A)$. Now multiply the second row of A by a scalar r and find det:

$$
\operatorname{det}\left(A_{r \cdot r_{2} \rightarrow r_{2}}\right)=\left|\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \\
r a_{21} & r a_{22} & r a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=
$$

$a_{11}\left(r a_{22}\right) a_{33}+a_{12}\left(r a_{23}\right) a_{31}+a_{13}\left(r a_{21}\right) a_{32}-a_{13}\left(r a_{22}\right) a_{31}-a_{11}\left(r a_{23}\right) a_{32}-a_{12}\left(r a_{21}\right) a_{33}$.
This is r times $\operatorname{det}(A)$. Now add r times first row to the last one:

$$
\begin{gathered}
\operatorname{det}\left(A_{r \cdot r_{1}+r_{3} \rightarrow r_{3}}\right)=\left|\begin{array}{rrr}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
r a_{11}+a_{31} & r a_{12}+a_{32} & r a_{13}+a_{33}
\end{array}\right|= \\
a_{11} a_{22}\left(r a_{13}+a_{33}\right)+a_{12} a_{23}\left(r a_{11}+a_{31}\right)+a_{13} a_{21}\left(r a_{12}+a_{32}\right) \\
-a_{13} a_{22}\left(r a_{11}+a_{31}\right)-a_{11} a_{23}\left(r a_{12}+a_{32}\right)-a_{12} a_{21}\left(r a_{13}+a_{33}\right)= \\
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}=\operatorname{det}(A) .
\end{gathered}
$$

[All terms with r vanish.] So, ERTs of the third type preserve the determinant.
Our observations in case of matrices of order $n=3$ are valid for any n. Moreover, they are the same for column transformations. Namely,

1. switching two rows (or two columns) changes the sign of det;
2. multiplying a row (or a column) by a number multiplies det by the same number;
3. adding a multiple of one row to another one (or a column to another one) does not change det.

Or, in the other direction,

$$
\begin{aligned}
& \operatorname{det}(A)=-\operatorname{det}\left(A_{r_{i} \leftrightarrow r_{j}}\right) ; \\
& \operatorname{det}(A)=\frac{1}{r} \operatorname{det}\left(A_{r \cdot r_{i} \rightarrow r_{i}}\right) ; \\
& \operatorname{det}(A)=\operatorname{det}\left(A_{r \cdot r_{i}+r_{j} \rightarrow r_{j}}\right) .
\end{aligned}
$$

Before giving examples, point out one important
Theorem. 1. If a matrix A has a zero row or a zero column, then $\operatorname{det}(A)=0$.
2. If A is upper-triangular or lower-triangular, then $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$ (product of all diagonal entries).

This follows directly from formula (1). A term $\pm a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}}$ contains one element from each row and one element from each column. Hence if A has a zero row or a zero column, all terms in the sum (1) are 0 , and $\operatorname{det}(A)=0$. Consider now the case of upper-triangular A. Find all nonzero terms in formula (1): $\pm a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} \neq 0$ implies $a_{n j_{n}} \neq 0$. Then $j_{n}=n$, because all other entries of the bottom row of A are 0 . Next, $a_{(n-1) j_{n-1}}$ must be nonzero. Then $j_{n-1}=n-1$ or n. But $j_{n}=n$ already. Hence $j_{n-1}=n-1$. Proceeding in this way, we get $j_{n-2}=n-2, \ldots, j_{1}=1$. Thus the only nonzero term is $\pm a_{11} a_{22} \cdots a_{n n}$. The sign must be + for the permutation $12 \ldots n$ has no inversions. We conclude $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$. A similar argument works for lower-triangular A.

Now let A be an $n \times n$ matrix. By ERTs we can produce an upper-triangular matrix B from A. Knowing $\operatorname{det}(B)$ we can find $\operatorname{det}(A)$.

Example.

$$
\begin{gathered}
\left|\begin{array}{lll}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{array}\right|= \\
\left\lvert\, \begin{array}{lll}
& \text { (switch rows } \left.1 \text { and } 3)=-\left|\begin{array}{lll}
3 & 2 & 1 \\
6 & 5 & 4 \\
9 & 8 & 7
\end{array}\right|=\text { zero out below }(1,1) \text { entry }\right)= \\
\left.\left|\begin{array}{lll}
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right|=\text { (zero out below }(2,2) \text { entry }\right)=\left|\begin{array}{lll}
3 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right|=0 .
\end{array} .=\right.\text {. }
\end{gathered}
$$

By words 'zero out below $(1,1)$ entry' we mean subtracting multiples of the first row from other rows so that all entries below $(1,1)$ entry are 0 . Similarly for $(2,2)$ entry in the next step. The latter determinant is 0 because of the first or the second statement of the theorem above.

This example illustrates that straightforward computing of det by formula (3) is not always the fastest way: verifying $9 \cdot 5 \cdot 1+8 \cdot 4 \cdot 3+7 \cdot 2 \cdot 6-7 \cdot 5 \cdot 3-9 \cdot 2 \cdot 4-1 \cdot 8 \cdot 6=0$ takes more time then reducing to an upper-triangular matrix above.

Example.

$$
\begin{aligned}
& \left|\begin{array}{lll}
0 & 2 & 3 \\
2 & 4 & 6 \\
5 & 1 & 3
\end{array}\right|=\left(\text { multiply row } 2 \text { by } \frac{1}{2}\right)=2\left|\begin{array}{lll}
0 & 2 & 3 \\
1 & 2 & 3 \\
5 & 1 & 3
\end{array}\right|=(\text { switch rows } 1 \text { and } 2)= \\
& \\
& -2\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
5 & 1 & 3
\end{array}\right|=(\text { zero out below }(1,1) \text { entry })=-2\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & -9 & -12
\end{array}\right|= \\
& \text { (zero out below }(2,2) \text { entry })=-2\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & \frac{3}{2}
\end{array}\right|=-2\left(1 \cdot 2 \cdot \frac{3}{2}\right)=-6 .
\end{aligned}
$$

In this example the straightforward computation by formula (3) would be, probably, easier (do it!).

