## Lec 16: Cofactor expansion and other properties of determinants

We already know two methods for computing determinants. The first one is simply by definition. It works great for matrices of order 2 and 3 . Another method is producing an upper-triangular or lower-triangular form of a matrix by a sequence of elementary row and column transformations. This can be performed without much difficulty for matrices of order 3 and 4 . For matrices of order 4 and higher, perhaps, the most efficient way to calculate determinants is the cofactor expansion. This method is described as follows.

Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix. Denote by $M_{i j}$ the submatrix of $A$ obtained by deleting its row and column containing $a_{i j}$ (that is, row $i$ and column $j$ ). Then $\operatorname{det}\left(M_{i j}\right)$ is called the minor of $a_{i j}$. For example, let

$$
A=\left|\begin{array}{lll}
1 & 2 & 3  \tag{1}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right| .
$$

$M_{11}$ is obtained by deleting row 1 and column $1 ; M_{23}$ is $A$ without row 2 and column 3:

$$
M_{11}=\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right| \quad M_{23}=\left|\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right| .
$$

The minor of $a_{11}$ is $\operatorname{det}\left(M_{11}\right)=5 \cdot 9-8 \cdot 6=-3$ and the minor of $a_{23}$ is $\operatorname{det}\left(M_{23}\right)=-6$.
If we multiply the minor of $a_{i j}$ by $(-1)^{i+j}$, then we arrive at the definition of the cofactor $A_{i j}$ of $a_{i j}$ :

$$
A_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right) .
$$

In the example above, $A_{11}=(-1)^{2} \cdot(-3)=-3, A_{23}=(-1)^{5} \cdot(-6)=6$. Verify that $A_{12}=6, A_{13}=-3$ and find the rest of cofactors.

The method of cofactor expansion is given by the formulas

$$
\operatorname{det}(A)=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{\text {in }} \quad \text { (expansion of } \operatorname{det}(A) \text { along } i^{\text {th }} \text { row) }
$$

$\operatorname{det}(A)=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j} \quad$ (expansion of $\operatorname{det}(A)$ along $j^{\text {th }}$ column)
Let's find $\operatorname{det}(A)$ for matrix (1) using expansion along the top row:

$$
\operatorname{det}(A)=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=1 \cdot(-3)+2 \cdot 6+3 \cdot(-3)=0 .
$$

[Compare with the first example from the previous lecture. Basing on that example, could you say that $\operatorname{det}(A)=0$ without any calculations?] It would be the same as if we used the expansion along any other row or column. For example, the expansion along the second column gives:

$$
\operatorname{det}(A)=a_{12} A_{12}+a_{22} A_{22}+a_{32} A_{32}=-2\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+5\left|\begin{array}{ll}
1 & 3 \\
7 & 9
\end{array}\right|-8\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|=0
$$

The method of cofactor expansion is especially applicable if a matrix has a row or a column with many zeros. Then we expand the determinant along this row or column.

Example. Compute the determinant of

$$
A=\left[\begin{array}{cccc}
2 & -1 & 1 & 0 \\
3 & 5 & 0 & -2 \\
1 & 1 & 0 & -3 \\
4 & 0 & 3 & -1
\end{array}\right]
$$

The third column looks more preferable as it contains two zeros. Let's use the expansion along this column.

$$
\left|\begin{array}{cccc}
2 & -1 & 1 & 0 \\
3 & 5 & 0 & -2 \\
1 & 1 & 0 & -3 \\
4 & 0 & 3 & -1
\end{array}\right|=1 \cdot\left|\begin{array}{ccc}
3 & 5 & -2 \\
1 & 1 & -3 \\
4 & 0 & -1
\end{array}\right|-3 \cdot\left|\begin{array}{ccc}
2 & -1 & 0 \\
3 & 5 & -2 \\
1 & 1 & -3
\end{array}\right|=-50+99=49
$$

[We omitted zero terms.] Note that for computing the $3 \times 3$ determinants above we can use the expansion again. For example

$$
\left|\begin{array}{lll}
3 & 5 & -2 \\
1 & 1 & -3 \\
4 & 0 & -1
\end{array}\right|=4\left|\begin{array}{ll}
5 & -2 \\
1 & -3
\end{array}\right|+(-1)\left|\begin{array}{ll}
3 & 5 \\
1 & 1
\end{array}\right|=-52+2=-50
$$

[We used the expansion along the bottom row.]
Important exercise: find $\operatorname{det}(A)$ expanding along the second row and make sure the answer is the same.

Now let's discuss some questions regarding determinants.

- What are the determinants of elementary matrices? They are $-1, r$ and 1 for elementary matrices of respectively first, second (multiplication of a row or a column by $r$ ) and third type. For example, let $E$ be an elementary matrix corresponding to switching two rows. If we apply this ERT to the identity matrix $I_{n}$, we get $E I_{n}=E$. On the other hand, from the previous lecture we know that det is multiplied by -1 after this transformation: $\operatorname{det}(E)=-\operatorname{det}\left(I_{n}\right)=-1$.
- Is it true that $\operatorname{det}(r A)=r \operatorname{det}(A)$ ? Yes - see the previous lecture.
- Is it true that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ ? Yes. See the proof on pp. $151-153$ of the book. As a consequence, the determinant of a product of any number of matrices is equal to the product of their determinants.
- Is it true that $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$ ? No. If we take $A=I_{2}, B=-I_{2}$, then $\operatorname{det}(A+B)=0$ but $\operatorname{det}(A)=\operatorname{det}(B)=1$, and $0 \neq 1+1=2$.
The property $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ is very important. It allows to prove
Theorem. Matrix $A$ is invertible if and only if $\operatorname{det}(A) \neq 0$.
Proof. If $A$ is invertible, then it is a product of elementary matrices. Then, by the mentioned property, the determinant of $A$ is product of determinants of these matrices. Each of these determinants is nonzero as it must be $-1, r \neq 0$ or 1 . Therefore $\operatorname{det}(A) \neq 0$. On the other hand, if $A$ is singular, its RREF $B=E A$ has a row of zeros, and $0=\operatorname{det}(B)=\operatorname{det}(E) \operatorname{det}(A)$. Since $\operatorname{det}(E) \neq 0, \operatorname{det}(A)=0$.

If $A^{-1}$ exists, then $A A^{-1}=I_{n}$ and $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(I_{n}\right)=1$. Hence $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$. By theorem, matrix (1) is singular and the $4 \times 4$ matrix in the example above is invertible, with the determinant $\frac{1}{49}$.

