Lec 16: Cofactor expansion and other properties of determinants

We already know two methods for computing determinants. The first one is
simply by definition. It works great for matrices of order 2 and 3. Another method is
producing an upper-triangular or lower-triangular form of a matrix by a sequence of
elementary row and column transformations. This can be performed without much
difficulty for matrices of order 3 and 4. For matrices of order 4 and higher, perhaps, the
most efficient way to calculate determinants is the cofactor expansion. This method
is described as follows.

Let A = [a;;] be an n x n matrix. Denote by M;; the submatrix of A obtained
by deleting its row and column containing a,; (that is, row ¢ and column j). Then
det(M;;) is called the minor of a;;. For example, let
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My, is obtained by deleting row 1 and column 1; Mss is A without row 2 and column 3:
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The minor of a; is det(Mp1) = 5-9—8-6 = —3 and the minor of agg is det(Magz) = —6.
If we multiply the minor of a;; by (—1)"*7, then we arrive at the definition of the
cofactor A;j of a;;: -
Aij = (—1)Z+J det(M”)
In the example above, Aj; = (—1)?- (=3) = =3, Ay3 = (—1)° - (—6) = 6. Verify that
Ao =6, Aj3 = —3 and find the rest of cofactors.
The method of cofactor expansion is given by the formulas

det(A) = a; Ay + aipAig + - + ain Ay (expansion of det(A) along i*" row)
det(A) = ai;A1; + agjAgj + -+ -+ anjA,; (expansion of det(A) along j* column)
Let’s find det(A) for matrix (1) using expansion along the top row:
det(A) = (IHAH + a12A12 + CL13A13 =1- (—3) +2-64+3- (—3) = 0.

[Compare with the first example from the previous lecture. Basing on that example,
could you say that det(A) = 0 without any calculations?] It would be the same as if
we used the expansion along any other row or column. For example, the expansion
along the second column gives:
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det(A) = CL12A12 + CL22A22 + CL32A32 = -2 ’ 4 6

’+5‘ ‘—8' ‘:0.
The method of cofactor expansion is especially applicable if a matrix has a row
or a column with many zeros. Then we expand the determinant along this row or

column.



Example. Compute the determinant of

2 -1 1 0
3 5 0 -2
A= 1 1 0 -3
4 0 3 -1

The third column looks more preferable as it contains two zeros. Let’s use the ex-
pansion along this column.

; _51 (1) _02 35 -2 2 -1 0

=1-11 1 =3/=3-13 5 —2/=-50+99 = 49.
110 =3 4 0 —1 1 1 -3
4 0 3 -1

[We omitted zero terms.] Note that for computing the 3 x 3 determinants above we
can use the expansion again. For example

35 -2
L1 =3 :4’“;’ :§’+(—1)‘i’ ?':—52+2:—50.
40 -1

[We used the expansion along the bottom row.]
Important exercise: find det(A) expanding along the second row and make sure the
answer is the same.

Now let’s discuss some questions regarding determinants.

e What are the determinants of elementary matrices? They are —1, r and 1
for elementary matrices of respectively first, second (multiplication of a row or
a column by r) and third type. For example, let £ be an elementary matrix
corresponding to switching two rows. If we apply this ERT to the identity matrix
I, we get EI, = E. On the other hand, from the previous lecture we know that
det is multiplied by —1 after this transformation: det(E) = —det(1,,) = —1.

e [s it true that det(rA) = rdet(A)? Yes — see the previous lecture.

e s it true that det(AB) = det(A)det(B)? Yes. See the proof on pp. 151—153
of the book. As a consequence, the determinant of a product of any number of
matrices is equal to the product of their determinants.

e Is it true that det(A + B) = det(A) +det(B)? No. If we take A = I, B = —1I,
then det(A + B) = 0 but det(A) =det(B) =1, and 0 # 1 +1 = 2.

The property det(AB) = det(A) det(B) is very important. It allows to prove
Theorem. Matriz A is invertible if and only if det(A) # 0.

Proof. If A is invertible, then it is a product of elementary matrices. Then, by
the mentioned property, the determinant of A is product of determinants of these
matrices. FEach of these determinants is nonzero as it must be —1, r # 0 or 1.
Therefore det(A) # 0. On the other hand, if A is singular, its RREF B = EA has a
row of zeros, and 0 = det(B) = det(FE) det(A). Since det(F) # 0, det(A) = 0. O

If A7! exists, then AA™' = I, and det(A)det(A™!) = det(l,) = 1. Hence

det(A™!) = detl( 7y~ By theorem, matrix (1) is singular and the 4 x 4 matrix in the

example above is invertible, with the determinant ﬁ.




