
Lec 16: Cofactor expansion and other properties of determinants

We already know two methods for computing determinants. The first one is
simply by definition. It works great for matrices of order 2 and 3. Another method is
producing an upper-triangular or lower-triangular form of a matrix by a sequence of
elementary row and column transformations. This can be performed without much
difficulty for matrices of order 3 and 4. For matrices of order 4 and higher, perhaps, the
most efficient way to calculate determinants is the cofactor expansion. This method
is described as follows.

Let A = [aij] be an n × n matrix. Denote by Mij the submatrix of A obtained
by deleting its row and column containing aij (that is, row i and column j). Then
det(Mij) is called the minor of aij. For example, let

A =

∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
. (1)

M11 is obtained by deleting row 1 and column 1; M23 is A without row 2 and column 3:

M11 =

∣∣∣∣
5 6
8 9

∣∣∣∣ M23 =

∣∣∣∣
1 2
7 8

∣∣∣∣ .

The minor of a11 is det(M11) = 5·9−8·6 = −3 and the minor of a23 is det(M23) = −6.
If we multiply the minor of aij by (−1)i+j, then we arrive at the definition of the

cofactor Aij of aij:
Aij = (−1)i+j det(Mij).

In the example above, A11 = (−1)2 · (−3) = −3, A23 = (−1)5 · (−6) = 6. Verify that
A12 = 6, A13 = −3 and find the rest of cofactors.

The method of cofactor expansion is given by the formulas

det(A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin (expansion of det(A) along ith row)

det(A) = a1jA1j + a2jA2j + · · ·+ anjAnj (expansion of det(A) along jth column)

Let’s find det(A) for matrix (1) using expansion along the top row:

det(A) = a11A11 + a12A12 + a13A13 = 1 · (−3) + 2 · 6 + 3 · (−3) = 0.

[Compare with the first example from the previous lecture. Basing on that example,
could you say that det(A) = 0 without any calculations?] It would be the same as if
we used the expansion along any other row or column. For example, the expansion
along the second column gives:

det(A) = a12A12 + a22A22 + a32A32 = −2

∣∣∣∣
4 6
7 9

∣∣∣∣ + 5

∣∣∣∣
1 3
7 9

∣∣∣∣− 8

∣∣∣∣
1 3
4 6

∣∣∣∣ = 0.

The method of cofactor expansion is especially applicable if a matrix has a row
or a column with many zeros. Then we expand the determinant along this row or
column.
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Example. Compute the determinant of

A =




2 −1 1 0
3 5 0 −2
1 1 0 −3
4 0 3 −1


 .

The third column looks more preferable as it contains two zeros. Let’s use the ex-
pansion along this column.∣∣∣∣∣∣∣∣

2 −1 1 0
3 5 0 −2
1 1 0 −3
4 0 3 −1

∣∣∣∣∣∣∣∣
= 1 ·

∣∣∣∣∣∣

3 5 −2
1 1 −3
4 0 −1

∣∣∣∣∣∣
− 3 ·

∣∣∣∣∣∣

2 −1 0
3 5 −2
1 1 −3

∣∣∣∣∣∣
= −50 + 99 = 49.

[We omitted zero terms.] Note that for computing the 3 × 3 determinants above we
can use the expansion again. For example∣∣∣∣∣∣

3 5 −2
1 1 −3
4 0 −1

∣∣∣∣∣∣
= 4

∣∣∣∣
5 −2
1 −3

∣∣∣∣ + (−1)

∣∣∣∣
3 5
1 1

∣∣∣∣ = −52 + 2 = −50.

[We used the expansion along the bottom row.]
Important exercise: find det(A) expanding along the second row and make sure the
answer is the same.

Now let’s discuss some questions regarding determinants.

• What are the determinants of elementary matrices? They are −1, r and 1
for elementary matrices of respectively first, second (multiplication of a row or
a column by r) and third type. For example, let E be an elementary matrix
corresponding to switching two rows. If we apply this ERT to the identity matrix
In, we get EIn = E. On the other hand, from the previous lecture we know that
det is multiplied by −1 after this transformation: det(E) = − det(In) = −1.

• Is it true that det(rA) = r det(A)? Yes — see the previous lecture.

• Is it true that det(AB) = det(A) det(B)? Yes. See the proof on pp. 151—153
of the book. As a consequence, the determinant of a product of any number of
matrices is equal to the product of their determinants.

• Is it true that det(A+B) = det(A)+det(B)? No. If we take A = I2, B = −I2,
then det(A + B) = 0 but det(A) = det(B) = 1, and 0 6= 1 + 1 = 2.

The property det(AB) = det(A) det(B) is very important. It allows to prove

Theorem. Matrix A is invertible if and only if det(A) 6= 0.

Proof. If A is invertible, then it is a product of elementary matrices. Then, by
the mentioned property, the determinant of A is product of determinants of these
matrices. Each of these determinants is nonzero as it must be −1, r 6= 0 or 1.
Therefore det(A) 6= 0. On the other hand, if A is singular, its RREF B = EA has a
row of zeros, and 0 = det(B) = det(E) det(A). Since det(E) 6= 0, det(A) = 0.

If A−1 exists, then AA−1 = In and det(A) det(A−1) = det(In) = 1. Hence
det(A−1) = 1

det(A)
. By theorem, matrix (1) is singular and the 4 × 4 matrix in the

example above is invertible, with the determinant 1
49

.
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