Lec 17: Inverse of a matrix and Cramer's rule
We are aware of algorithms that allow to solve linear systems and invert a matrix. It turns out that determinants make possible to find those by explicit formulas. For instance, if A is an $n \times n$ invertible matrix, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \tag{1}\\
A_{12} & A_{22} & \cdots & A_{n 2} \\
\vdots & \vdots & \ddots & \cdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right]
$$

Note that the (i, j) entry of matrix (1) is the cofactor $A_{j i}$ (not $A_{i j}!$). In fact the entry is $\frac{A_{j i}}{\operatorname{det}(A)}$ as we multiply the matrix by $\frac{1}{\operatorname{det}(A)}$. [We can divide by $\operatorname{det}(A)$ since it is not 0 for an invertible matrix.] Curiously, in spite of the simple form, formula (1) is hardly applicable for finding A^{-1} when n is large. This is because computing $\operatorname{det}(A)$ and the cofactors requires too much time for such n. Notice that $\operatorname{det}(A)$ can be found as soon as we know the cofactors, because of the cofactor expansion formula.

Example. Find the inverse, if it exists, for

$$
A=\left[\begin{array}{rrr}
0 & 1 & 2 \\
-2 & 3 & -1 \\
4 & 0 & 1
\end{array}\right]
$$

We have:

$$
A_{11}=\left|\begin{array}{rr}
3 & -1 \\
0 & 1
\end{array}\right|=3, \quad A_{12}=-\left|\begin{array}{rr}
-2 & -1 \\
4 & 1
\end{array}\right|=-2, \quad A_{13}=\left|\begin{array}{rr}
-2 & 3 \\
4 & 0
\end{array}\right|=-12 .
$$

Find the determinant by the expansion along the first row:

$$
\operatorname{det}(A)=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=0 \cdot 3+1 \cdot(-2)+2 \cdot(-12)=-26
$$

Since $\operatorname{det}(A) \neq 0$, we conclude that A is invertible, and we can continue computing cofactors ${ }^{1}$:

$$
\begin{gathered}
A_{21}=-\left|\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right|=-1, \quad A_{22}=\left|\begin{array}{ll}
0 & 2 \\
4 & 1
\end{array}\right|=-8, \quad A_{23}=-\left|\begin{array}{ll}
0 & 1 \\
4 & 0
\end{array}\right|=4, \\
A_{31}=\left|\begin{array}{rr}
1 & 2 \\
3 & -1
\end{array}\right|=-7, \quad A_{32}=-\left|\begin{array}{rr}
0 & 2 \\
-2 & -1
\end{array}\right|=-4, \quad A_{33}=\left|\begin{array}{rr}
0 & 1 \\
-2 & 3
\end{array}\right|=2 .
\end{gathered}
$$

By formula (1)

$$
A^{-1}=-\frac{1}{26}\left[\begin{array}{rrr}
3 & -1 & -7 \\
-2 & -8 & -4 \\
-12 & 4 & 2
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{3}{26} & \frac{1}{26} & \frac{7}{26} \\
\frac{1}{13} & \frac{4}{13} & \frac{2}{13} \\
\frac{6}{13} & -\frac{2}{13} & -\frac{1}{13}
\end{array}\right] .
$$

The method of finding A^{-1} using the augmented matrix $\left[A \mid I_{3}\right]$ seems to be faster for the previous example.

It worth mentioning that in case of 2×2 matrix A formula (1) is especially simple:

$$
\text { If } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { and } \operatorname{det}(A)=a d-b c \neq 0 \text {, then } A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \text {. }
$$

[^0]Make sure that $A A^{-1}=I_{2}$ (thus you will prove formula (1) for the case $n=2$). For example,

$$
\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{rr}
3 & -1 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{rr}
\frac{3}{2} & -\frac{1}{2} \\
-2 & 1
\end{array}\right] .
$$

Now describe the Cramer's rule for solving linear systems $A \bar{x}=\bar{b}$. It is assumed that A is a square matrix and $\operatorname{det}(A) \neq 0$ (or, what is the same, A is invertible). Then, as we know, the linear system has a unique solution. The rule says that this solution is given by the formula

$$
\begin{equation*}
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, \quad x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \quad \ldots, \quad x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}, \tag{2}
\end{equation*}
$$

where A_{i} is the matrix obtained from A by replacing the $i^{\text {th }}$ column of A by \bar{b}. [Don't confuse with cofactors $A_{i j}!$]

Example. Solve the linear system

$$
\begin{aligned}
& 3 x_{1}+x_{2}-2 x_{3}=4 \\
& -x_{1}+2 x_{2}+3 x_{3}=1 \\
& 2 x_{1}+x_{2}+4 x_{3}=-2 .
\end{aligned}
$$

We have (check all calculations!)

$$
\operatorname{det}(A)=\left|\begin{array}{rrr}
3 & 1 & -2 \\
-1 & 2 & 3 \\
2 & 1 & 4
\end{array}\right|=35
$$

Since $\operatorname{det}(A) \neq 0$, we can use the Cramer's rule. Let's find determinants of A_{1}, A_{2}, A_{3} :

$$
\operatorname{det}\left(A_{1}\right)=\left|\begin{array}{rrr}
4 & 1 & -2 \\
1 & 2 & 3 \\
-2 & 1 & 4
\end{array}\right|=0, \operatorname{det}\left(A_{2}\right)=\left|\begin{array}{rrr}
3 & 4 & -2 \\
-1 & 1 & 3 \\
2 & -2 & 4
\end{array}\right|=70, \operatorname{det}\left(A_{3}\right)=\left|\begin{array}{rrr}
3 & 1 & 4 \\
-1 & 2 & 1 \\
2 & 1 & -2
\end{array}\right|=-35 .
$$

Now by formula (2):

$$
x_{1}=\frac{0}{35}=0, \quad x_{2}=\frac{70}{35}=2, \quad x_{3}=-\frac{35}{35}=-1 .
$$

Thus $0,2,-1$ is the solution to our system.
As before, in case of the linear system with two equations and two variables the solution is particularly simple. Consider the system

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

with unknowns x and y. If $a d-b c \neq 0$, then by Cramer's rule

$$
x=\frac{d e-b f}{a d-b c}, \quad y=\frac{a f-c e}{a d-b c} .
$$

Make sure that these satisfy to the above system (thus you will prove Cramer's rule for 2×2 case). For example, the system

$$
\begin{aligned}
& x+3 y=0 \\
& 2 x+7 y=1
\end{aligned}
$$

has the solution $x=-\frac{3}{1}=-3, y=\frac{1}{1}=1$.

[^0]: ${ }^{1}$ If the determinant were 0 , we would stop here and say that A is singular (there is no need to find rest cofactors).

