
Lec 21, 22: Span

Let V be a vector space and S = {v1,v2, . . . ,vk} a set of its vectors. The set
of all linear combinations of v1, . . . ,vk is a subspace in V (why?). This subspace is
called the span of S or the span of v1, . . . ,vk, and denoted by Span S. Thus we have

Span S = {a1v1 + a2v2 + · · ·+ akvk} for all real numbers a1, . . . , ak.

[According to the previous lecture, we should have written a1¯v1⊕a2¯v2⊕· · ·⊕akvk

for a linear combination. For the reason of notation simplicity, we will denote the
operations ⊕ and ¯ by + and · respectively. For instance, a¯ u⊕ b¯ v = au + bv.]

For example, the span of matrices

∣∣∣∣
1 0
0 0

∣∣∣∣ and

∣∣∣∣
0 0
0 1

∣∣∣∣ are all matrices of the form
∣∣∣∣
a 0
0 b

∣∣∣∣, or all diagonal matrices.

We define the span of the empty set as the trivial subspace {0}.

Example. Let V = R3. Does vector v =




1
2
6


 belong to the span of v1 =




2
1
0


 and

v2 =




3
1
−2


?

In other words, can v be represented as av1 + bv2, or are there such numbers a
and b that

a




2
1
0


 + b




3
1
−2


 =




1
2
6


?

This equation can be rewritten as a linear system with variables a, b:

2a + 3b = 1, a + b = 2,−2b = 6. (1)

It has the solution a = 5, b = −3. Therefore the answer to our question is positive: v
belongs to Span{v1,v2}, specifically, v = 5v1 − 3v2.

If the system (1) in our example had no solutions (say, if v =




1
0
0


), then the

answer would be negative: v does not belong to Span{v1,v2}. Of course, the case
of infinitely many solutions is also positive. The difference is that there are infinitely
many linear combinations of v1 and v2 that equal v (not the only one as in the
example). See also examples 7-10 of the book.

The span of 2-vectors v1 =

[
1
2

]
, v2 =

[
2
3

]
, v3 =

[
3
4

]
is the entire R2. For this

we need to show that every v =

[
a
b

]
can be represented as xv1 + yv2 + zv3 for some

x, y, z:

x

[
1
2

]
+ y

[
2
3

]
+ z

[
3
4

]
=

[
a
b

]
.
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We have the linear system with variables x, y, z:

x + 2y + 3z = a, 2x + 3y + 4z = b.

The RREF of the augmented matrix

[
1 2 3 |a
2 3 4 |b

]

is [
1 0 −1 |2b− 3a
0 1 2 |2a− b.

]

Then we have one free variable z, which can take any value, and x = 2b − 3a + z,
y = 2a − b − 2z. So, any linear combination of the form (2b − 3a + z)v1 + (2a −
b − 2z)v2 + zv3 equals v. Hence R2 = Span{v1,v2,v3}. If we take z = 0, then
v = (2b− 3a)v1 + (2a− b)v2. This shows that R2 can be represented as the span of
a less number of vectors:

R2 = Span{v1,v2,v3} = Span{v1,v2}.

Now we can’t drop more vectors, that is Span{v1} and Span{v2} are less than R2

(why?). Such vectors v1 and v2 are called linearly independent. More precisely,
Let S = {v1,v2, . . . ,vk} and Si is obtained from S by deleting vi. Vectors v1, . . . ,vk

are called linearly independent, if Span Si 6= Span S (i. e. Span Si is contained in
Span S but does not coincide with it) for all i = 1, . . . , k. So, in the last example
v1 and v2 are linearly independent and vectors v1,v2,v3 are linearly dependent (i. e.
not linearly independent).

Theorem 0.1. The following statements are equivalent:

(1) v1, . . . , vk are linearly independent,

(2) none vi can be represented as a linear combination of other vj,

(3) if a1v1 + a2v2 + · · ·+ akvk = 0, then all ai equal 0.

Proof. Prove the implication (1) ⇒ (2) from the contrary. Suppose some vi can be
expressed through others, say,

vk = a1v1 + a2v2 + · · ·+ ak−1vk−1.

Then Spanv1, . . . ,vk = Span{v1, . . . ,vk−1}, because any linear combination of v1, . . . ,vk

is a linear combination of v1, . . . ,vk−1 by plugging the formula above instead of vk.
And this contradicts to linear independence of v1, . . . ,vk.

Now prove (2) ⇒ (3), again from the contrary. Suppose a1v1+a2v2+· · ·+akvk = 0
and some ai 6= 0. For certainty, let ak 6= 0. Then we can divide the identity by ak

and express vk = − a1

ak
v1 − a2

ak
v2 − · · · − ak−1

ak
vk−1, which contradicts (2).

As an exercise, prove the remaining implication (3) ⇒ (1).
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For example, matrices

v1 =

[
1 2
0 3

]
, v2 =

[
3 2
0 1

]
, v3 =

[
1 1
0 1

]

are linearly dependent, because v1 + v2 − 4v3 = 0 (we use property (3)).
If S = {v1, . . . ,vk} contains the zero vector 0, then S is linearly dependent,

because we can drop 0, and the span does not change. If S contains to equal vectors,
then, for the same reason, S is linearly dependent.

Example. Are the vectors

v1 =




1
2
3


 , v2 =




3
1
2


 , v3 =




2
3
1




linearly independent?
By (3), we need to see if xv1 + yv2 + zv3 = 0 has only the trivial solution. The

matrix of coefficients for this linear system (of x, y, z) is

A = [v1 v2 v3] =




1 3 2
2 1 3
3 2 1


 .

As we know, it has the only solution (trivial one) if and only if det(A) 6= 0. We have
det(A) = 18 6= 0. Then x = y = z = 0 and v1, v2, v3 are linearly independent.

This example suggests the following observation. Vectors v1, . . . ,vn of Rn are lin-
early independent if and only if the n×n matrix with columns v1, . . . ,vn has a nonzero
determinant. [If the determinant is 0, then the vectors are linearly dependent.]
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