Lec 21, 22: Span
Let V be a vector space and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ a set of its vectors. The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a subspace in V (why?). This subspace is called the span of S or the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, and denoted by Span S. Thus we have

$$
\operatorname{Span} S=\left\{a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}\right\} \quad \text { for all real numbers } a_{1}, \ldots, a_{k}
$$

[According to the previous lecture, we should have written $a_{1} \odot \mathbf{v}_{1} \oplus a_{2} \odot \mathbf{v}_{2} \oplus \cdots \oplus a_{k} \mathbf{v}_{k}$ for a linear combination. For the reason of notation simplicity, we will denote the operations \oplus and \odot by + and \cdot respectively. For instance, $a \odot \mathbf{u} \oplus b \odot \mathbf{v}=a \mathbf{u}+b \mathbf{v}$.]

For example, the span of matrices $\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|$ and $\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|$ are all matrices of the form $\left|\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right|$, or all diagonal matrices.

We define the span of the empty set as the trivial subspace $\{\mathbf{0}\}$.
Example. Let $V=\mathbb{R}^{3}$. Does vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]$ belong to the span of $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}3 \\ 1 \\ -2\end{array}\right]$?

In other words, can \mathbf{v} be represented as $a \mathbf{v}_{1}+b \mathbf{v}_{2}$, or are there such numbers a and b that

$$
a\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right] ?
$$

This equation can be rewritten as a linear system with variables a, b :

$$
\begin{equation*}
2 a+3 b=1, a+b=2,-2 b=6 \tag{1}
\end{equation*}
$$

It has the solution $a=5, b=-3$. Therefore the answer to our question is positive: \mathbf{v} belongs to $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, specifically, $\mathbf{v}=5 \mathbf{v}_{1}-3 \mathbf{v}_{2}$.

If the system (1) in our example had no solutions (say, if $\mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$), then the answer would be negative: \mathbf{v} does not belong to $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Of course, the case of infinitely many solutions is also positive. The difference is that there are infinitely many linear combinations of \mathbf{v}_{1} and \mathbf{v}_{2} that equal \mathbf{v} (not the only one as in the example). See also examples $7-10$ of the book.

The span of 2-vectors $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is the entire \mathbb{R}^{2}. For this we need to show that every $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$ can be represented as $x \mathbf{v}_{1}+y \mathbf{v}_{2}+z \mathbf{v}_{3}$ for some x, y, z :

$$
x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{l}
2 \\
3
\end{array}\right]+z\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

We have the linear system with variables x, y, z :

$$
x+2 y+3 z=a, 2 x+3 y+4 z=b .
$$

The RREF of the augmented matrix

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & \mid a \\
2 & 3 & 4 & \mid b
\end{array}\right]
$$

is

$$
\left[\begin{array}{ccc|c}
1 & 0 & -1 & \mid 2 b-3 a \\
0 & 1 & 2 & \mid 2 a-b .
\end{array}\right]
$$

Then we have one free variable z, which can take any value, and $x=2 b-3 a+z$, $y=2 a-b-2 z$. So, any linear combination of the form $(2 b-3 a+z) \mathbf{v}_{1}+(2 a-$ $b-2 z) \mathbf{v}_{2}+z \mathbf{v}_{3}$ equals \mathbf{v}. Hence $\mathbb{R}^{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. If we take $z=0$, then $\mathbf{v}=(2 b-3 a) \mathbf{v}_{1}+(2 a-b) \mathbf{v}_{2}$. This shows that \mathbb{R}^{2} can be represented as the span of a less number of vectors:

$$
\mathbb{R}^{2}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} .
$$

Now we can't drop more vectors, that is $\operatorname{Span}\left\{v_{1}\right\}$ and $\operatorname{Span}\left\{v_{2}\right\}$ are less than \mathbb{R}^{2} (why?). Such vectors \mathbf{v}_{1} and \mathbf{v}_{2} are called linearly independent. More precisely,
Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ and S_{i} is obtained from S by deleting \mathbf{v}_{i}. Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are called linearly independent, if Span $S_{i} \neq \operatorname{Span} S$ (i. e. Span S_{i} is contained in Span S but does not coincide with it) for all $i=1, \ldots, k$. So, in the last example \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent and vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent (i. e. not linearly independent).

Theorem 0.1. The following statements are equivalent:
(1) $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ are linearly independent,
(2) none \boldsymbol{v}_{i} can be represented as a linear combination of other \boldsymbol{v}_{j},
(3) if $a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{k} \boldsymbol{v}_{k}=\boldsymbol{0}$, then all a_{i} equal 0.

Proof. Prove the implication (1) \Rightarrow (2) from the contrary. Suppose some \mathbf{v}_{i} can be expressed through others, say,

$$
\mathbf{v}_{k}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k-1} \mathbf{v}_{k-1} .
$$

Then $\operatorname{Span} \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$, because any linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$ by plugging the formula above instead of \mathbf{v}_{k}. And this contradicts to linear independence of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

Now prove $(2) \Rightarrow(3)$, again from the contrary. Suppose $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{0}$ and some $a_{i} \neq 0$. For certainty, let $a_{k} \neq 0$. Then we can divide the identity by a_{k} and express $\mathbf{v}_{k}=-\frac{a_{1}}{a_{k}} \mathbf{v}_{1}-\frac{a_{2}}{a_{k}} \mathbf{v}_{2}-\cdots-\frac{a_{k-1}}{a_{k}} \mathbf{v}_{k-1}$, which contradicts (2).

As an exercise, prove the remaining implication (3) \Rightarrow (1).

For example, matrices

$$
\mathbf{v}_{1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

are linearly dependent, because $\mathbf{v}_{1}+\mathbf{v}_{2}-4 \mathbf{v}_{3}=\mathbf{0}$ (we use property (3)).
If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ contains the zero vector $\mathbf{0}$, then S is linearly dependent, because we can drop $\mathbf{0}$, and the span does not change. If S contains to equal vectors, then, for the same reason, S is linearly dependent.

Example. Are the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
$$

linearly independent?
By (3), we need to see if $x \mathbf{v}_{1}+y \mathbf{v}_{2}+z \mathbf{v}_{3}=\mathbf{0}$ has only the trivial solution. The matrix of coefficients for this linear system (of x, y, z) is

$$
A=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right]
$$

As we know, it has the only solution (trivial one) if and only if $\operatorname{det}(A) \neq 0$. We have $\operatorname{det}(A)=18 \neq 0$. Then $x=y=z=0$ and $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.

This example suggests the following observation. Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \mathbb{R}^{n} are linearly independent if and only if the $n \times n$ matrix with columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ has a nonzero determinant. [If the determinant is 0 , then the vectors are linearly dependent.]

