
Lec 23: Basis and dimension

Notions of span and linear independence allow now to define basis of a vector
space. Let V be a vector space. Its vectors v1, . . . ,vk are called a basis of V if they
are linearly independent and span V .

For example, vectors e1 =




1
0
0


, e2 =




0
1
0


, e3 =




0
0
1


 form a basis of R3. Indeed,

they are linearly independent: if ae1 + be2 + ce3 =




a
b
c


 equals 0, then a = b =

c = 0. And they span R3 because any vector




x
y
z


 can be represented as the linear

combination xe1 + ye2 + ze3. The basis {e1, e2, e3} is called the standard basis of R3.
Similarly, vectors

e1 =




1
0
...
0
0




, e2 =




0
1
...
0
0




, . . . , en =




0
0
...
0
1




form the standard basis of Rn.
Exercises. 1◦. Denote by Rn the vector space of all 1×n matrices. What would

be the standard basis in it?
2◦. Let Mat(n, m) be the vector space of all n × m matrices (Mat(n, 1) = Rn,

Mat(1, n) = Rn). Denote by Eij the matrix which (i, j) entry is 1 and all other entries
are 0. Show that all Eij form a basis of Mat(n,m).

3◦. Consider the vector space Pol(n) of all polynomials of degree ≤ n. Prove that
the polynomials tn, tn−1, . . . , t2, t, 1 form a basis in Poln. [It is called the standard
basis.]

All these examples illustrate that the vectors spaces we usually consider have
obvious bases. There are many other, not that obvious, vector sets which form a
basis.

Example. Find out whether the vectors

v1 =




1
2
0


 , v2 =




1
1
1


 , v3 =




2
0
3




form a basis in R3.
These vectors are linearly independent since the 3× 3 matrix

A = [v1 v2 v3] =




1 1 2
2 1 0
0 1 3




1



has the nonzero determinant (it is 1). Now check if the span of v1,v2,v3 equals R3.

For this, take an arbitrary vector v =




a
b
c


 and solve the linear equation xv1 + yv2 +

zv3 = v, which is equivalent to the system

x + y + 2z = a,
2x + y = b,
y + 3z = c,

or A




x
y
z


 = v where matrix A is as above. Since det(A) 6= 0, A is invertible. Hence the

linear system has the solution A−1v. Thus we have shown that Span{v1,v2,v3} = R3.
With linear independence this implies that v1,v2,v3 is a basis of R3.

In this example we used only that det(A) 6= 0. If det(A) was 0, the vectors would
be linearly dependent by a theorem from last lecture, and therefore would not be a
basis. Essentially, we proved

Theorem. Vectors v1, v2, . . . , vn form a basis of Rn if and only if the determinant of
the n× n matrix A = [v1 v2 · · · vn] is nonzero.

Note that this theorem concerns only the case of n vectors in Rn. There is a
natural question: is it possible that m vectors form a basis of Rn and m 6= n? The
answer is NO, all bases consist of the same number of vectors. To illustrate it, consider

the space V = R2. Its standard basis consists of two vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
.

Prove that there are no bases in R2 consisting of one or three vectors. The former

is impossible because a vector v =

[
a
b

]
can’t span R2. Indeed, otherwise e1 = cv

for some number c, which implies b = 0; but then e2 is not of the form dv, hence

not in the span of v. Now consider the case of three vectors u1 =

[
a1

b1

]
, u2 =

[
a2

b2

]
,

u3 =

[
a3

b3

]
. Of course, they may span R2. But it still can’t be a basis since the

linear independence fails (that is, there is a nontrivial linear combination of u1,u2,u3

which equals 0). This is because the homogeneous equation xu1 + yu2 + zu3 = 0 has
infinitely many solutions (its coefficient matrix is a 2×3 matrix, and there necessarily
will be a free variable). This argument can be generalized to any vector space, not
only R2. We have:

Theorem. If {u1,u2, . . . ,un} and {v1, v2, . . . , vm} are bases of a vector space V ,
then n = m.

Example. Find out whether the matrices
[
1 2
0 1

]
,

[
3 1
4 2

]
,

[
0 1
5 3

]
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form a basis of Mat(2, 2).
We know (see the exercise above) that there is a basis consisting of 4 vectors

E11, E12, E21, E22. Then the matrices above do not constitute a basis, because their
amount is 3, which is not equal to 4.

The number of elements in a basis of V is called the dimension of V and denoted
by dim V . This is a correct definition since by the theorem all bases consist of the
same number of vectors. For example, dim Rn = dim Rn = n, dim Pol(n) = n + 1,
dim Mat(m,n) = mn. A vector space V is called finite-dimensional, if it has a basis
consisting of finite number of vectors (and then this number equals dim V ). It is
possible, however, that V has no such a basis, e. g. the space of all polynomials
(it has a basis of infinite number of vectors: 1, t, t2, t3, . . . ). In this case V is called
infinite-dimensional, and dim V = ∞. We will usually deal with finite-dimensional
vector spaces.

Note that any linearly independent set S = {u1,u2, . . . ,uk} of vectors in V can
be complemented to a basis. Indeed, if Span S = V , then S is already a basis. If
Span S is less than V , then take a vector uk+1 not containing in Span S, and add it to
the set S. Now we have S = {u1, . . . ,uk,uk+1} and it is linearly independent (why?).
We continue adding vectors to S until Span S = V . Then we conclude that S is a
basis of V . To illustrate this, consider V the space of all traceless 2× 2 matrices, i. e.
matrices of the form [

a b
c −a

]

and S consisting of a matrix u1 =

[
0 1
0 0

]
. Take a matrix u2 not in the span of S,

that is not of the form

[
0 b
0 0

]
. Say, u2 =

[
0 0
1 0

]
. Now the span of S = {u1,u2}

consists of matrices

[
0 b
c 0

]
for all b, c. It is not V yet, e. g. it does not contain the

matrix

[
1 0
0 −1

]
. Denote this matrix by u3 and add to S. Then Span S consist of all

matrices of the form

[
a b
c −a

]
. Hence Span S = V and S = {u1,u2,u3} is a basis of

V . In particular, dim V = 3.

Theorem. Let V be a vector space of dimension n. Then any linearly independent
set S of n vectors is a basis in V .

Proof. We only need to show that Span S = V . By the argument above, S can be
complemented to form a basis of V . But then it will have more than n vectors, which
can’t be a basis. So, S is already a basis.

Example. Do polynomials

u = 2t2 − t + 1, v = −t2 + 3t + 2, w = 5t2 − 1

form a basis of Pol(2)?
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Since dim Pol(2) = 3 and we have three polynomials, the last theorem says, u,v,w
form a basis if and only if they are linearly independent. Let’s check it. For this we
need to solve the equation xu + yv + zw = 0, or (2x− y + 5z)t2 + (−x + 3y)t + (x +
2y − z) = 0, which leads to the system

2x− y + 5z = 0,
−x + 3y = 0,

x + 2y − z = 0,
.

The determinant of the coefficient matrix is −30, which is nonzero. Hence the sys-
tem has only the trivial solution x = y = z = 0. Therefore, u,v,w are linearly
independent and form a basis.
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