Lec 23: Basis and dimension

Notions of span and linear independence allow now to define basis of a vector space. Let V be a vector space. Its vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are called a basis of V if they are linearly independent and span V.

For example, vectors $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ form a basis of \mathbb{R}^{3}. Indeed, they are linearly independent: if $a \mathbf{e}_{1}+b \mathbf{e}_{2}+c \mathbf{e}_{3}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ equals $\mathbf{0}$, then $a=b=$ $c=0$. And they span \mathbb{R}^{3} because any vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ can be represented as the linear combination $x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$. The basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is called the standard basis of \mathbb{R}^{3}. Similarly, vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right], \ldots, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

form the standard basis of \mathbb{R}^{n}.
Exercises. 1°. Denote by \mathbb{R}_{n} the vector space of all $1 \times n$ matrices. What would be the standard basis in it?
2°. Let $\operatorname{Mat}(n, m)$ be the vector space of all $n \times m$ matrices $\left(\operatorname{Mat}(n, 1)=\mathbb{R}^{n}\right.$, $\left.\operatorname{Mat}(1, n)=\mathbb{R}_{n}\right)$. Denote by $E_{i j}$ the matrix which (i, j) entry is 1 and all other entries are 0 . Show that all $E_{i j}$ form a basis of $\operatorname{Mat}(n, m)$.
3°. Consider the vector space $\operatorname{Pol}(n)$ of all polynomials of degree $\leq n$. Prove that the polynomials $t^{n}, t^{n-1}, \ldots, t^{2}, t, 1$ form a basis in Pol_{n}. [It is called the standard basis.]

All these examples illustrate that the vectors spaces we usually consider have obvious bases. There are many other, not that obvious, vector sets which form a basis.

Example. Find out whether the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]
$$

form a basis in \mathbb{R}^{3}.
These vectors are linearly independent since the 3×3 matrix

$$
A=\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]
$$

has the nonzero determinant (it is 1). Now check if the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ equals \mathbb{R}^{3}. For this, take an arbitrary vector $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and solve the linear equation $x \mathbf{v}_{1}+y \mathbf{v}_{2}+$ $z \mathbf{v}_{3}=\mathbf{v}$, which is equivalent to the system

$$
\begin{aligned}
x+y+2 z & =a, \\
2 x+y & =b, \\
y+3 z & =c,
\end{aligned}
$$

or $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\mathbf{v}$ where matrix A is as above. Since $\operatorname{det}(A) \neq 0, A$ is invertible. Hence the linear system has the solution $A^{-1} \mathbf{v}$. Thus we have shown that $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\mathbb{R}^{3}$. With linear independence this implies that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ is a basis of \mathbb{R}^{3}.

In this example we used only that $\operatorname{det}(A) \neq 0$. If $\operatorname{det}(A)$ was 0 , the vectors would be linearly dependent by a theorem from last lecture, and therefore would not be a basis. Essentially, we proved

Theorem. Vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis of \mathbb{R}^{n} if and only if the determinant of the $n \times n$ matrix $A=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}\end{array}\right]$ is nonzero.

Note that this theorem concerns only the case of n vectors in \mathbb{R}^{n}. There is a natural question: is it possible that m vectors form a basis of \mathbb{R}^{n} and $m \neq n$? The answer is NO, all bases consist of the same number of vectors. To illustrate it, consider the space $V=\mathbb{R}^{2}$. Its standard basis consists of two vectors $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Prove that there are no bases in \mathbb{R}^{2} consisting of one or three vectors. The former is impossible because a vector $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$ can't span \mathbb{R}^{2}. Indeed, otherwise $\mathbf{e}_{1}=c \mathbf{v}$ for some number c, which implies $b=0$; but then \mathbf{e}_{2} is not of the form $d \mathbf{v}$, hence not in the span of \mathbf{v}. Now consider the case of three vectors $\mathbf{u}_{1}=\left[\begin{array}{l}a_{1} \\ b_{1}\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}a_{2} \\ b_{2}\end{array}\right]$, $\mathbf{u}_{3}=\left[\begin{array}{l}a_{3} \\ b_{3}\end{array}\right]$. Of course, they may span \mathbb{R}^{2}. But it still can't be a basis since the linear independence fails (that is, there is a nontrivial linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ which equals $\mathbf{0}$). This is because the homogeneous equation $x \mathbf{u}_{1}+y \mathbf{u}_{2}+z \mathbf{u}_{3}=\mathbf{0}$ has infinitely many solutions (its coefficient matrix is a 2×3 matrix, and there necessarily will be a free variable). This argument can be generalized to any vector space, not only \mathbb{R}^{2}. We have:

Theorem. If $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$ are bases of a vector space V, then $n=m$.

Example. Find out whether the matrices

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
3 & 1 \\
4 & 2
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
5 & 3
\end{array}\right]
$$

form a basis of $\operatorname{Mat}(2,2)$.
We know (see the exercise above) that there is a basis consisting of 4 vectors $E_{11}, E_{12}, E_{21}, E_{22}$. Then the matrices above do not constitute a basis, because their amount is 3 , which is not equal to 4 .

The number of elements in a basis of V is called the dimension of V and denoted by $\operatorname{dim} V$. This is a correct definition since by the theorem all bases consist of the same number of vectors. For example, $\operatorname{dim} R^{n}=\operatorname{dim} R_{n}=n, \operatorname{dim} \operatorname{Pol}(n)=n+1$, $\operatorname{dim} \operatorname{Mat}(m, n)=m n$. A vector space V is called finite-dimensional, if it has a basis consisting of finite number of vectors (and then this number equals $\operatorname{dim} V$). It is possible, however, that V has no such a basis, e. g. the space of all polynomials (it has a basis of infinite number of vectors: $1, t, t^{2}, t^{3}, \ldots$). In this case V is called infinite-dimensional, and $\operatorname{dim} V=\infty$. We will usually deal with finite-dimensional vector spaces.

Note that any linearly independent set $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ of vectors in V can be complemented to a basis. Indeed, if Span $S=V$, then S is already a basis. If Span S is less than V, then take a vector \mathbf{u}_{k+1} not containing in Span S, and add it to the set S. Now we have $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{u}_{k+1}\right\}$ and it is linearly independent (why?). We continue adding vectors to S until Span $S=V$. Then we conclude that S is a basis of V. To illustrate this, consider V the space of all traceless 2×2 matrices, i. e. matrices of the form

$$
\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right]
$$

and S consisting of a matrix $\mathbf{u}_{1}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Take a matrix \mathbf{u}_{2} not in the span of S, that is not of the form $\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]$. Say, $\mathbf{u}_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Now the span of $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ consists of matrices $\left[\begin{array}{ll}0 & b \\ c & 0\end{array}\right]$ for all b, c. It is not V yet, e. g. it does not contain the matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Denote this matrix by \mathbf{u}_{3} and add to S. Then $\operatorname{Span} S$ consist of all matrices of the form $\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]$. Hence Span $S=V$ and $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis of V. In particular, $\operatorname{dim} V=3$.

Theorem. Let V be a vector space of dimension n. Then any linearly independent set S of n vectors is a basis in V.

Proof. We only need to show that $\operatorname{Span} S=V$. By the argument above, S can be complemented to form a basis of V. But then it will have more than n vectors, which can't be a basis. So, S is already a basis.

Example. Do polynomials

$$
\mathbf{u}=2 t^{2}-t+1, \mathbf{v}=-t^{2}+3 t+2, \mathbf{w}=5 t^{2}-1
$$

form a basis of $\operatorname{Pol}(2)$?

Since $\operatorname{dim} \operatorname{Pol}(2)=3$ and we have three polynomials, the last theorem says, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ form a basis if and only if they are linearly independent. Let's check it. For this we need to solve the equation $x \mathbf{u}+y \mathbf{v}+z \mathbf{w}=\mathbf{0}$, or $(2 x-y+5 z) t^{2}+(-x+3 y) t+(x+$ $2 y-z)=\mathbf{0}$, which leads to the system

$$
\begin{aligned}
2 x-y+5 z & =0 \\
-x+3 y & =0 \\
x+2 y-z & =0
\end{aligned}
$$

The determinant of the coefficient matrix is -30 , which is nonzero. Hence the system has only the trivial solution $x=y=z=0$. Therefore, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent and form a basis.

