Lec 25: Coordinates and Isomorphisms.

[Here should be an example of finding basis for a space of solutions $A \bar{x}=\mathbf{0}$. See example on p. 247 of the book.]

By means of bases all n-dimensional vector space can be identified with \mathbb{R}^{n} as follows. Let V be an n-dimensional vector space. This means that there is a basis $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of n vectors. Hence any \mathbf{v} in V has a unique presentation

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}
$$

Numbers a_{i} are called coordinates of \mathbf{v} in basis S. They define a vector $[\mathbf{v}]_{S}$ in \mathbb{R}^{n} by the obvious formula

$$
[\mathbf{v}]_{S}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Thus we have a $1-1$ correspondence between V and \mathbb{R}^{n} (this means that if $\mathbf{v} \neq \mathbf{w}$ then $\left.[\mathbf{v}]_{S} \neq[\mathbf{w}]_{S}\right)$. Moreover, this correspondents preserves operations. Namely, $[\mathbf{v}+\mathbf{w}]_{S}=[\mathbf{v}]_{S}+[\mathbf{w}]_{S}$ and $[a \mathbf{v}]_{S}=a[\mathbf{v}]_{S}$. This allows us to say that any n-dimensional vector space is essentially \mathbb{R}^{n}. Note that the basis S corresponds to the standard basis in $\mathbb{R}^{n}:\left[\mathbf{v}_{i}\right]_{S}=\mathbf{e}_{i}$. For example, if $V=\operatorname{Pol}(2)$ and $S=\left\{1, t, t^{2}\right\}$, then

$$
\left[1+3 t+2 t^{2}\right]_{S}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[-t+2 t^{2}\right]_{S}=\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]
$$

and to the sum $\left(1+3 t+2 t^{2}\right)+\left(-t+2 t^{2}\right)=1-2 t+4 t^{2}$ it corresponds $\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]$ which is the sum of $\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right]$. The same for scalar multiplication. This is the identification of $\operatorname{Pol}(2)$ and \mathbb{R}^{3}. Note that the order of basis elements is important for this correspondence. Say, if $T=\left\{t^{2}, t, 1\right\}$, then

$$
\left[1+3 t+2 t^{2}\right]_{T}=\left[2 t^{2}+3 t+1\right]_{T}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
$$

which is not equal to $\left[1+3 t+2 t^{2}\right]_{S}$. That is why we treat S not as a basis but as ordered basis; so any permutation of vectors in S gives a different basis T.

Example. Let $V=\mathbb{R}^{2}$ and $S=\left\{\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$. Show that S is a basis and find $[\mathbf{v}]_{S}$ where $\mathbf{v}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
S is a basis because $\operatorname{det}(A)=\left|\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right|=1 \neq 0$. Now find the coordinates of \mathbf{v} in $S: x \mathbf{v}_{1}+y \mathbf{v}_{2}=\mathbf{v}$. This is a linear system with unknowns x, y and with coefficient matrix A. The (unique) solution is $x=4, y=-1$ (verify!). These are the coordinates and $[\mathbf{v}]_{S}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$.

The correspondence above suggests the following definition. A function f from a vector space V to a vector space W is called isomorphism if it is 1-1 correspondence and preserves operations. The above function $f: V \rightarrow \mathbb{R}^{n}, f(\mathbf{v})=[\mathbf{v}]_{S}$ is an isomorphism. The function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ which maps $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ to $\left[\begin{array}{l}a+c \\ b-c\end{array}\right]$ (e. g. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ to $\left[\begin{array}{c}4 \\ -1\end{array}\right]$) preserves the operations (why?) but is not 1-1 because the equation $f\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has infinitely many solutions (why?) [so, to $\mathbf{0}$ in \mathbb{R}^{2} it corresponds many vectors in \mathbb{R}^{3}, not one]. If there is an isomorphism $f: V \rightarrow W$, then there is an isomorphism $f^{\prime}: W \rightarrow V$ (why?). We say that V and W are isomorphic. For example $\operatorname{Pol}(2)$ is isomorphic to \mathbb{R}^{3}, $\operatorname{Mat}(2,2)$ is isomorphic to $\mathbb{R}^{4}, \mathbb{R}_{n}$ - to \mathbb{R}^{n}. More generally, all n-dimensional vector spaces are isomorphic to \mathbb{R}^{n}. Note that if U, V are isomorphic and V, W are isomorphic, then U, W are isomorphic (because the composition of isomorphisms is an isomorphism). Then any two n-dimensional vector spaces are isomorphic (how to construct an isomorphism?). Moreover,

Theorem. Vector spaces of different dimensions are not isomorphic.
Exercise: prove this theorem (hint: show first that any isomorphism takes a basis to a basis).

For example, spaces $\operatorname{Pol}(5)$ and $\operatorname{Mat}(3,3)$ are not isomorphic and $\operatorname{Pol}(5)$, $\operatorname{Mat}(2,3)$ are. Work out conditions for the space $\operatorname{Pol}(n)$ and $\operatorname{Pol}(k, l)$ to be isomorphic. Isomorphisms can be exploited to answer questions like this:

Example. Find all p for which the set $S=\left\{t^{2}+t+3,4 t^{2}-t, 2 t^{2}+t+p\right\}$ is a not basis in $\mathrm{Pol}(2)$.

Under the isomorphism $f: \operatorname{Pol}(2) \rightarrow \mathbb{R}^{3}$ defined by $f\left(a t^{2}+b t+c\right)=a \mathbf{e}_{1}+b \mathbf{e}_{2}+c \mathbf{e}_{3}$ the set S goes to $T=\left\{\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}4 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ p\end{array}\right]\right\}$. Now, since isomorphisms take bases to bases, S is not a basis in $\operatorname{Pol}(2)$ if and only if T is not a basis in \mathbb{R}^{3}. As we know, the latter is equivalent to

$$
\left|\begin{array}{ccc}
1 & 4 & 2 \\
1 & -1 & 1 \\
3 & 0 & p
\end{array}\right|=0
$$

or $18-5 p=0$, which implies $p=3.6$. Then S is not a basis if and only if $p=3.6$.

