
Lec 25: Coordinates and Isomorphisms.

[Here should be an example of finding basis for a space of solutions Ax̄ = 0. See
example on p.247 of the book.]

By means of bases all n-dimensional vector space can be identified with Rn as
follows. Let V be an n-dimensional vector space. This means that there is a basis
S = {v1,v2, . . . ,vn} of n vectors. Hence any v in V has a unique presentation

v = a1v1 + a2v2 + · · ·+ anvn.

Numbers ai are called coordinates of v in basis S. They define a vector [v]S in Rn by
the obvious formula

[v]S =




a1

a2
...

an


 .

Thus we have a 1-1 correspondence between V and Rn (this means that if v 6= w
then [v]S 6= [w]S). Moreover, this correspondents preserves operations. Namely,
[v+w]S = [v]S +[w]S and [av]S = a[v]S. This allows us to say that any n-dimensional
vector space is essentially Rn. Note that the basis S corresponds to the standard basis
in Rn: [vi]S = ei. For example, if V = Pol(2) and S = {1, t, t2}, then

[1 + 3t + 2t2]S =




1
3
2


 , [−t + 2t2]S =




0
−1
2




and to the sum (1 + 3t + 2t2) + (−t + 2t2) = 1 − 2t + 4t2 it corresponds




1
−2
4




which is the sum of




1
3
2


 and




0
−1
2


. The same for scalar multiplication. This is the

identification of Pol(2) and R3. Note that the order of basis elements is important
for this correspondence. Say, if T = {t2, t, 1}, then

[1 + 3t + 2t2]T = [2t2 + 3t + 1]T =




2
3
1




which is not equal to [1 + 3t + 2t2]S. That is why we treat S not as a basis but as
ordered basis; so any permutation of vectors in S gives a different basis T .

Example. Let V = R2 and S = {v1 =

[
1
1

]
,v2 =

[
1
2

]
}. Show that S is a basis and

find [v]S where v =

[
3
2

]
.

1



S is a basis because det(A) =

∣∣∣∣
1 1
1 2

∣∣∣∣ = 1 6= 0. Now find the coordinates of v in

S: xv1 + yv2 = v. This is a linear system with unknowns x, y and with coefficient
matrix A. The (unique) solution is x = 4, y = −1 (verify!). These are the coordinates

and [v]S =

[
4
−1

]
.

The correspondence above suggests the following definition. A function f from a
vector space V to a vector space W is called isomorphism if it is 1-1 correspondence
and preserves operations. The above function f : V → Rn, f(v) = [v]S is an isomor-

phism. The function f : R3 → R2 which maps




a
b
c


 to

[
a + c
b− c

]
(e. g.




1
2
3


 to

[
4
−1

]
)

preserves the operations (why?) but is not 1-1 because the equation f(




x
y
z


) =

[
0
0

]

has infinitely many solutions (why?) [so, to 0 in R2 it corresponds many vectors in
R3, not one]. If there is an isomorphism f : V → W , then there is an isomorphism
f ′ : W → V (why?). We say that V and W are isomorphic. For example Pol(2)
is isomorphic to R3, Mat(2, 2) is isomorphic to R4, Rn - to Rn. More generally, all
n-dimensional vector spaces are isomorphic to Rn. Note that if U , V are isomorphic
and V , W are isomorphic, then U , W are isomorphic (because the composition of
isomorphisms is an isomorphism). Then any two n-dimensional vector spaces are
isomorphic (how to construct an isomorphism?). Moreover,

Theorem. Vector spaces of different dimensions are not isomorphic.

Exercise: prove this theorem (hint: show first that any isomorphism takes a basis
to a basis).

For example, spaces Pol(5) and Mat(3, 3) are not isomorphic and Pol(5), Mat(2, 3)
are. Work out conditions for the space Pol(n) and Pol(k, l) to be isomorphic. Iso-
morphisms can be exploited to answer questions like this:

Example. Find all p for which the set S = {t2 + t + 3, 4t2 − t, 2t2 + t + p} is a not
basis in Pol(2).

Under the isomorphism f : Pol(2) → R3 defined by f(at2+bt+c) = ae1+be2+ce3

the set S goes to T = {



1
1
3


 ,




4
−1
0


 ,




2
1
p


}. Now, since isomorphisms take bases to

bases, S is not a basis in Pol(2) if and only if T is not a basis in R3. As we know, the
latter is equivalent to ∣∣∣∣∣∣

1 4 2
1 −1 1
3 0 p

∣∣∣∣∣∣
= 0,

or 18− 5p = 0, which implies p = 3.6. Then S is not a basis if and only if p = 3.6.
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