Lec 26: Transition matrix.

Let V be an n-dimensional vector space and $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, T=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ its two bases. The transition matrix $P_{S \leftarrow T}$ from T to S is $n \times n$ matrix which columns are coordinates of \mathbf{w}_{j} in basis S :

$$
P_{S \leftarrow T}=\left[\left[\mathbf{w}_{1}\right]_{S}\left[\mathbf{w}_{2}\right]_{S} \ldots\left[\mathbf{w}_{n}\right]_{S}\right] .
$$

As we will see, by means of this matrix one can transform coordinates of a vector in basis T to coordinates in S. But before the theorem, let's look at examples of finding $P_{S \leftarrow T}$.
Example 1. $V=\mathbb{R}^{3}, S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}-$ standard basis, $T=\left\{\mathbf{w}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{w}_{2}=\right.$ $\left.\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \mathbf{w}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$. Then

$$
P_{S \leftarrow T}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

(e. g. $\mathbf{w}_{3}=2 \mathbf{e}_{2}+\mathbf{e}_{3}$)

Example 2. $V=\mathbb{R}_{3}, S=\left\{\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}, T=\left\{\mathbf{w}_{1}=\right.$ $\left.\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \mathbf{w}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$. To find the coordinates x_{1}, x_{2}, x_{3} of \mathbf{w}_{1} in basis S, we have to solve the linear system:

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{w}_{1} .
$$

Its augmented matrix is $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mid \mathbf{w}_{1}\right]$. The RREF will be $\left[I_{3} \mid \mathbf{x}\right]$ for some \mathbf{x} (the matrix $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right]$ has nonzero det, so its RREF is the identity matrix). Clearly, then \mathbf{x} will be the solution. Similarly, to find the coordinates of $\mathbf{w}_{2}, \mathbf{w}_{3}$ in S, we have to solve linear systems with augmented matrices $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mid \mathbf{w}_{2}\right],\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mid \mathbf{w}_{3}\right]$. Hence we can do it at once by producing the RREF for the partitioned matrix

$$
\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\left|\mathbf{w}_{1}\right| \mathbf{w}_{2} \mid \mathbf{w}_{3}
\end{array}\right]=\left[\begin{array}{ccc:c:c:c}
1 & -2 & 1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1 & 1 & 1 \\
3 & 0 & 1 & 0 & 2 & 1
\end{array}\right]
$$

which one can find is

$$
\left[\begin{array}{lll|c|c|c}
1 & 0 & 0 & 1.5 & 0 & 1 \\
0 & 1 & 0 & -2 & 1 & -1 \\
0 & 0 & 1 & -4.5 & 2 & -2
\end{array}\right]
$$

. Then the last three column are exactly $\left[\mathbf{w}_{1}\right]_{S},\left[\mathbf{w}_{2}\right]_{S}$ and $\left[\mathbf{w}_{3}\right]_{S}$. So, the transition matrix is

$$
P_{S \leftarrow T}=\left[\begin{array}{ccc}
1.5 & 0 & 1 \\
-2 & 1 & -1 \\
-4.5 & 2 & -2
\end{array}\right]
$$

Theorem 0.1. For any vector \boldsymbol{v} in V we have $[\boldsymbol{v}]_{S}=P_{S \leftarrow T}[\boldsymbol{v}]_{T}$.
Proof. Let $\mathbf{v}=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+\cdots+c_{n} \mathbf{w}_{n}$ (in other words, $[\mathbf{v}]_{T}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$). Then $[\mathbf{v}]_{S}=$ $\left.\left[c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+\cdots+c_{n} \mathbf{w}_{n}\right]_{S}=c_{1}\left[\mathbf{w}_{1}\right]_{S}+c_{2}\left[\mathbf{w}_{2}\right]_{S}+\cdots+c_{n}\left[\mathbf{w}_{n}\right]_{S}=\left[\left[\mathbf{w}_{1}\right]_{S}\left[\mathbf{w}_{2}\right]_{S}\right] \ldots\left[\mathbf{w}_{n}\right]_{S}\right]\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]=$ $P_{S \leftarrow T}[\mathbf{v}]_{T}$.

In example 2, if $\mathbf{v}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$, then one can show $\mathbf{v}=2 \mathbf{w}_{2}+\mathbf{w}_{3}$, or equivalently, $[\mathbf{v}]_{T}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$. Then by Theorem we can find it's coordinates in S :

$$
[\mathbf{v}]_{S}=\left[\begin{array}{ccc}
1.5 & 0 & 1 \\
-2 & 1 & -1 \\
-4.5 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] .
$$

Hence $\mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}+2 \mathbf{v}_{3}$.
Point out some properties of $P_{S \leftarrow T}$:

- $P_{S \leftarrow S}=I_{n}$ - identity matrix (why?).
- If R, S, T are bases in V, then $P_{R \leftarrow S} P_{S \leftarrow T}=P_{R \leftarrow S}$. Indeed for any vector \mathbf{v} in V we have by the Theorem: $[\mathbf{v}]_{R}=P_{R \leftarrow S}[\mathbf{v}]_{S}=P_{R \leftarrow S}\left(P_{S \leftarrow T}[\mathbf{v}]_{T}\right)=$ $\left(P_{R \leftarrow S} P_{S \leftarrow T}\right)[\mathbf{v}]_{T}$. On the other hand, we know $[\mathbf{v}]_{R}=P_{R \leftarrow T}[\mathbf{v}]_{T}$. Then $\left(P_{R \leftarrow S} P_{S \leftarrow T}\right)[\mathbf{v}]_{T}=P_{R \leftarrow T}[\mathbf{v}]_{T}$. Since this holds for any \mathbf{v} (hence any $\left.[\mathbf{v}]_{T}\right)$, the matrices on the left coincide (why?): $P_{R \leftarrow S} P_{S \leftarrow T}=P_{R \leftarrow S}$.
- The transition matrix from T to S is invertible and its inverse is the transition matrix from S to $T: P_{S \leftarrow T}^{-1}=P_{T \leftarrow S}$. This follows from the previous properties, if we take $R=S$.

In example 2 we could compute $P_{S \leftarrow T}$ using the properties. Denote by $S t$ the standard basis in \mathbb{R}^{3}. Then $P_{S \leftarrow T}=P_{S \leftarrow S t} P_{S t \leftarrow T}=P_{S t \leftarrow S}^{-1} P_{S t \leftarrow T}$. The transition
matrices to the standard basis are obvious (example 1), so the only nontrivial thing is to find the inverse of the first matrix (do it!). We have
$P_{S \leftarrow T}=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}0.5 & -5 & -0.5 \\ -1 & -1 & 1 \\ -1.5 & 3 & 2.5\end{array}\right]^{-1}\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right]=\left[\begin{array}{ccc}1.5 & 0 & 1 \\ -2 & 1 & -1 \\ -4.5 & 2 & -2\end{array}\right]$,
exactly the matrix we got before.
Example 3. Let $V=\operatorname{Pol}(1), S=\left\{\mathbf{v}_{1}=t, \mathbf{v}_{2}=t-3\right\}, T=\left\{\mathbf{w}_{1}=t-1, \mathbf{w}_{2}=t+1\right\}$. For the standard basis $S t=\{t, 1\}$ we have

$$
P_{S t \leftarrow S}=\left[\begin{array}{cc}
1 & 1 \\
0 & -3
\end{array}\right], \quad P_{S t \leftarrow T}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

As in example 2, to find $P_{S \leftarrow T}$, we have to produce RREF for the partitioned matrix

$$
\left[P_{S t \leftarrow S} \mid P_{S t \leftarrow T}\right]=\left[\begin{array}{cc|cc}
1 & 1 & 1 & 1 \\
0 & -3 & -1 & 1
\end{array}\right],
$$

which is

$$
\left[\begin{array}{cc|cc}
1 & 0 & \frac{2}{3} & \frac{4}{3} \\
0 & 1 & \frac{1}{3} & -\frac{1}{3}
\end{array}\right] .
$$

Then take the matrix on the right:

$$
P_{S \leftarrow T}=\frac{1}{3}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right] .
$$

Another method of finding the transition matrix is $P_{S \leftarrow T}=P_{S t \leftarrow S}^{-1} P_{S t \leftarrow T}$ proved before the example. Verify that this way we get the same matrix. Note that $5 t-1=$ $3(t-1)+2(t+1)=3 \mathbf{w}_{1}+2 \mathbf{w}_{2}$. Using the theorem, find the coordinates of $5 t-1$ in basis S.

