
Lec 26: Transition matrix.

Let V be an n-dimensional vector space and S = {v1, . . . ,vn}, T = {w1, . . . ,wn} its
two bases. The transition matrix PS←T from T to S is n× n matrix which columns
are coordinates of wj in basis S:

PS←T = [[w1]S [w2]S . . . [wn]S].

As we will see, by means of this matrix one can transform coordinates of a vector in
basis T to coordinates in S. But before the theorem, let’s look at examples of finding
PS←T .

Example 1. V = R3, S = {e1, e2, e3} — standard basis, T = {w1 =




1
1
0


 ,w2 =




0
1
2


 ,w3 =




1
1
1


}. Then

PS←T =




1 0 1
1 1 1
0 2 1


 .

(e. g. w3 = 2e2 + e3)

Example 2. V = R3, S = {v1 =




1
2
3


 ,v2 =



−2
1
0


 ,v3 =




1
0
1


}, T = {w1 =




1
1
0


 ,w2 =




0
1
2


 ,w3 =




1
1
1


}. To find the coordinates x1, x2, x3 of w1 in basis S, we

have to solve the linear system:

x1v1 + x2v2 + x3v3 = w1.

Its augmented matrix is [v1 v2 v3|w1]. The RREF will be [I3|x] for some x (the
matrix [v1 v2 v3] has nonzero det, so its RREF is the identity matrix). Clearly, then
x will be the solution. Similarly, to find the coordinates of w2,w3 in S, we have to
solve linear systems with augmented matrices [v1 v2 v3|w2], [v1 v2 v3|w3]. Hence we
can do it at once by producing the RREF for the partitioned matrix

[v1 v2 v3|w1|w2|w3] =




1 −2 1 | 1 | 0 | 1
2 1 0 | 1 | 1 | 1
3 0 1 | 0 | 2 | 1




which one can find is 


1 0 0 | 1.5 | 0 | 1
0 1 0 | −2 | 1 | −1
0 0 1 | −4.5 | 2 | −2



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. Then the last three column are exactly [w1]S, [w2]S and [w3]S. So, the transition
matrix is

PS←T =




1.5 0 1
−2 1 −1
−4.5 2 −2


 .

Theorem 0.1. For any vector v in V we have [v]S = PS←T [v]T .

Proof. Let v = c1w1 + c2w2 + · · ·+ cnwn (in other words, [v]T =




c1

c2
...
cn


). Then [v]S =

[c1w1+c2w2+· · ·+cnwn]S = c1[w1]S+c2[w2]S+· · ·+cn[wn]S = [[w1]S [w2]S] . . . [wn]S]




c1

c2
...
cn


 =

PS←T [v]T .

In example 2, if v =




1
3
5


, then one can show v = 2w2 + w3, or equivalently,

[v]T =




0
2
1


. Then by Theorem we can find it’s coordinates in S:

[v]S =




1.5 0 1
−2 1 −1
−4.5 2 −2







0
2
1


 =




1
1
2


 .

Hence v = v1 + v2 + 2v3.
Point out some properties of PS←T :

• PS←S = In - identity matrix (why?).

• If R, S, T are bases in V , then PR←SPS←T = PR←S. Indeed for any vector
v in V we have by the Theorem: [v]R = PR←S[v]S = PR←S(PS←T [v]T ) =
(PR←SPS←T )[v]T . On the other hand, we know [v]R = PR←T [v]T . Then
(PR←SPS←T )[v]T = PR←T [v]T . Since this holds for any v (hence any [v]T ),
the matrices on the left coincide (why?): PR←SPS←T = PR←S.

• The transition matrix from T to S is invertible and its inverse is the transition
matrix from S to T : P−1

S←T = PT←S. This follows from the previous properties,
if we take R = S.

In example 2 we could compute PS←T using the properties. Denote by St the
standard basis in R3. Then PS←T = PS←StPSt←T = P−1

St←SPSt←T . The transition

2



matrices to the standard basis are obvious (example 1), so the only nontrivial thing
is to find the inverse of the first matrix (do it!). We have

PS←T =




1 −2 1
2 1 0
3 0 1



−1 


1 0 1
1 1 1
0 2 1


 =




0.5 −5 −0.5
−1 −1 1
−1.5 3 2.5



−1 


1 0 1
1 1 1
0 2 1


 =




1.5 0 1
−2 1 −1
−4.5 2 −2


 ,

exactly the matrix we got before.

Example 3. Let V = Pol(1), S = {v1 = t,v2 = t−3}, T = {w1 = t−1,w2 = t+1}.
For the standard basis St = {t, 1} we have

PSt←S =

[
1 1
0 −3

]
, PSt←T =

[
1 1
−1 1

]
.

As in example 2, to find PS←T , we have to produce RREF for the partitioned matrix

[PSt←S|PSt←T ] =

[
1 1 | 1 1
0 −3 | −1 1

]
,

which is [
1 0 | 2

3
4
3

0 1 | 1
3
−1

3

]
.

Then take the matrix on the right:

PS←T =
1

3

[
2 4
1 −1

]
.

Another method of finding the transition matrix is PS←T = P−1
St←SPSt←T proved

before the example. Verify that this way we get the same matrix. Note that 5t− 1 =
3(t− 1) + 2(t + 1) = 3w1 + 2w2. Using the theorem, find the coordinates of 5t− 1 in
basis S.
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