## Lec 30: Dot product and its properties.

Recall that the dot product of *n*-vectors

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

is (the real number)  $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$ . From this definition one can see that

- (1)  $\mathbf{u} \cdot \mathbf{u} \ge 0$ , and  $\mathbf{u} \cdot \mathbf{u} = 0$  if and only if  $\mathbf{u} = \mathbf{0}$ ;
- (2)  $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ ;
- (3)  $\mathbf{u} \cdot (a\mathbf{v} + b\mathbf{w}) = a(\mathbf{u} \cdot \mathbf{v}) + b(\mathbf{u} \cdot \mathbf{w}).$

These three properties will serve for the definition of inner product of vectors in arbitrary vector space. For this reason it is convenient to write  $\mathbf{u} \cdot \mathbf{v} = (\mathbf{u}, \mathbf{v})$  (simply another notation). Let's see some consequences of (1) - (3). Recall that the length of vector  $\mathbf{u}$  in  $\mathbb{R}^n$  is  $\|\mathbf{u}\| = \sqrt{(\mathbf{u}, \mathbf{u})}$ . For instance, the length of the vector  $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$  in  $\mathbb{R}^2$ is  $\sqrt{3^2 + 4^2} = \sqrt{25} = 5$ .

(4) Cauchy-Bunyakovsky-Schwarz inequality (CBS inequality):

$$|(\mathbf{u}, \mathbf{v})| \le \|\mathbf{u}\| \|\mathbf{v}\|.$$

Let's prove this. We have for any number r:

$$0 \le (r\mathbf{u} + \mathbf{v}, r\mathbf{u} + \mathbf{v}) = (\mathbf{u}, \mathbf{u})r^2 + 2(\mathbf{u}, \mathbf{v})r + (\mathbf{v}, \mathbf{v}) = q(r).$$

The case  $(\mathbf{u}, \mathbf{u}) = 0$  is obvious, because then  $\mathbf{u} = 0$  and CBS holds:  $0 \le 0$ . So, suppose  $\mathbf{u} \neq 0$ . Then q(r) is a quadratic polynomial with nonpositive discriminant (otherwise it would have two real roots a and b, and for all r between a and b it would be q(r) < 0, which is contradictory). The discriminant of q(r) is  $4(\mathbf{u}, \mathbf{v})^2 - 4(\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v})$ , and it is  $\leq 0$  if and only if  $(\mathbf{u}, \mathbf{v})^2 \leq (\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v})$ . Taking the square root, we obtain CBS inequality.

Take, for example,  $\mathbf{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$  and  $\mathbf{v} = \begin{bmatrix} \sqrt{3} \\ 1 \end{bmatrix}$ . Then  $(\mathbf{u}, \mathbf{v}) = 1$ ,  $\|\mathbf{u}\| = 1$ ,  $\|\mathbf{v}\| = 2$ . Clearly,  $1 = |(\mathbf{u}, \mathbf{v})| \le ||\mathbf{u}|| ||\mathbf{v}|| = 2$ .

By CBS inequality,

$$-1 \le \frac{(\mathbf{u}, \mathbf{v})}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1.$$

Then there is a unique real number  $0 \le \varphi \le \pi$  such that  $\cos \varphi = \frac{(\mathbf{u}, \mathbf{v})}{\|\mathbf{u}\| \|\mathbf{v}\|}$ . This number  $\varphi$  is called the *angle* between **u** and **v**. In the above example  $\cos \varphi = \frac{1}{2}$ , so  $\varphi = 60^{\circ}$ .

Another example: take  $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$  and  $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ . Then  $(\mathbf{u}, \mathbf{v}) = 0$  and  $\cos \varphi = 0$ . Hence  $\varphi = 90^\circ$ . This suggests the definition: vectors  $\mathbf{u}$  and  $\mathbf{v}$  are called *orthogonal*,

if  $({\bf u}, {\bf v}) = 0$ .

(5) Triangle inequality:

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|.$$

[Try to find the geometrical meaning of this for  $\mathbb{R}^2$ . Why this inequality is called triangle?] This is a simple consequence of CBS. Indeed, taking squares of both parts of the inequality above, one has

$$(\mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v}) \le (\mathbf{u}, \mathbf{u}) + 2\|\mathbf{u}\| \|\mathbf{v}\| + (\mathbf{v}, \mathbf{v}).$$

The left-hand side is  $(\mathbf{u}, \mathbf{u}) + 2(\mathbf{u}, \mathbf{v}) + (\mathbf{v}, \mathbf{v})$ , so the inequality becomes

$$(\mathbf{u}, \mathbf{v}) \le |\mathbf{u}| ||\mathbf{v}||,$$

and the latter follows directly from CBS inequality.

For example, if  $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ ,  $\mathbf{v} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ , then  $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$  and  $\|\mathbf{u} + \mathbf{v}\| = 7\sqrt{2}$ ,  $\|\mathbf{u}\| + \|\mathbf{v}\| = 5 + 5 = 10$ . So, according to the triangle inequality  $7\sqrt{2} \le 10$ , or after squaring  $98 \le 100$ .

We call a set of vectors *orthogonal*, if each pair of them is orthogonal. There is an important property of such sets:

(6) Orthogonal set of nonzero vectors  $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$  is linearly independent.

To show this, suppose

$$a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k = \mathbf{0}.$$

Then, for any i:

$$(\mathbf{u}_i, a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_k\mathbf{u}_k) = (\mathbf{u}_i, \mathbf{0}) = 0.$$

The left-hand side is  $a_i(\mathbf{u}_i, \mathbf{u}_i)$ , by orthogonality. Since  $\mathbf{u}_i \neq 0$  by assumption,  $(\mathbf{u}_i, \mathbf{u}_i) > 0$ . Then  $a_i = 0$  (for all i). This means that (6) is true.

In particular, if k = n (i.e. the number of vectors in the orthogonal set equal the dimension), then the orthogonal set form a basis (why?).

Especially useful are orthogonal sets  $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$  in which  $\|\mathbf{u}_i\| = 1$ . Such sets are called *orthonormal*. For example, the standard basis in  $\mathbb{R}^n$  is orthonormal. There are many orthonormal bases in  $\mathbb{R}^n$ .

## **Example 1.** Verify that

$$\mathbf{u}_1 = \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{2} \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix},$$

is an orthonormal basis in  $\mathbb{R}^3$ .

In general, given a basis  $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$  of  $\mathbb{R}^n$ , in order to find the coordinates of a **u** in this basis, we need to solve an  $n \times n$  linear system. But when S is orthonormal, the coefficients can be found rather easily.

(7) If a basis  $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$  of  $\mathbb{R}^n$  is orthonormal, then for any vector  $\mathbf{u}$ :

$$\mathbf{u} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_n \mathbf{u}_n,$$

where  $a_i = (\mathbf{u}, \mathbf{u}_i)$ .

Indeed,  $(\mathbf{u}, \mathbf{u}_i) = (a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \cdots + a_n\mathbf{u}_n, \mathbf{u}_i) = a_1(\mathbf{u}_1, \mathbf{u}_i) + \cdots + a_n(\mathbf{u}_n, \mathbf{u}_i) = a_i(\mathbf{u}_i, \mathbf{u}_i) = a_i$ .

Let's find the coordinates of the vector  $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$  in the basis from example 1. We

have

$$a_1 = (\mathbf{u}, \mathbf{u}_1) = 3 \cdot \frac{2}{3} + 4 \cdot (-\frac{2}{3}) + 5 \cdot \frac{1}{3} = 1, \ a_2 = (\mathbf{u}, \mathbf{u}_2) = 0, \ a_3 = (\mathbf{u}, \mathbf{u}_3) = 7.$$

In other words,

$$\mathbf{u} = \mathbf{u}_1 + 7\mathbf{u}_3.$$