Lec 30: Dot product and its properties.

Recall that the dot product of n-vectors

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

is (the real number) $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}$. From this definition one can see that
(1) $\mathbf{u} \cdot \mathbf{u} \geq 0$, and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$;
(2) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$;
(3) $\mathbf{u} \cdot(a \mathbf{v}+b \mathbf{w})=a(\mathbf{u} \cdot \mathbf{v})+b(\mathbf{u} \cdot \mathbf{w})$.

These three properties will serve for the definition of inner product of vectors in arbitrary vector space. For this reason it is convenient to write $\mathbf{u} \cdot \mathbf{v}=(\mathbf{u}, \mathbf{v})$ (simply another notation). Let's see some consequences of (1) - -(3). Recall that the length of vector \mathbf{u} in \mathbb{R}^{n} is $\|\mathbf{u}\|=\sqrt{(\mathbf{u}, \mathbf{u})}$. For instance, the length of the vector $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ in \mathbb{R}^{2} is $\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$.
(4) Cauchy-Bunyakovsky-Schwarz inequality (CBS inequality):

$$
|(\mathbf{u}, \mathbf{v})| \leq\|\mathbf{u}\|\|\mathbf{v}\| .
$$

Let's prove this. We have for any number r :

$$
0 \leq(r \mathbf{u}+\mathbf{v}, r \mathbf{u}+\mathbf{v})=(\mathbf{u}, \mathbf{u}) r^{2}+2(\mathbf{u}, \mathbf{v}) r+(\mathbf{v}, \mathbf{v})=q(r) .
$$

The case $(\mathbf{u}, \mathbf{u})=0$ is obvious, because then $\mathbf{u}=0$ and CBS holds: $0 \leq 0$. So, suppose $\mathbf{u} \neq 0$. Then $q(r)$ is a quadratic polynomial with nonpositive discriminant (otherwise it would have two real roots a and b, and for all r between a and b it would be $q(r)<0$, which is contradictory). The discriminant of $q(r)$ is $4(\mathbf{u}, \mathbf{v})^{2}-4(\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v})$, and it is ≤ 0 if and only if $(\mathbf{u}, \mathbf{v})^{2} \leq(\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v})$. Taking the square root, we obtain CBS inequality.

Take, for example, $\mathbf{u}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}\sqrt{3} \\ 1\end{array}\right]$. Then $(\mathbf{u}, \mathbf{v})=1,\|\mathbf{u}\|=1,\|\mathbf{v}\|=2$. Clearly, $1=|(\mathbf{u}, \mathbf{v})| \leq\|\mathbf{u}\|\|\mathbf{v}\|=2$.

By CBS inequality,

$$
-1 \leq \frac{(\mathbf{u}, \mathbf{v})}{\|\mathbf{u}\|\|\mathbf{v}\|} \leq 1
$$

Then there is a unique real number $0 \leq \varphi \leq \pi$ such that $\cos \varphi=\frac{(\mathbf{u}, \mathbf{v})}{\|\mathbf{u}\|\|\mathbf{v}\|}$. This number φ is called the angle between \mathbf{u} and \mathbf{v}. In the above example $\cos \varphi=\frac{1}{2}$, so $\varphi=60^{\circ}$. Another example: take $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$. Then $(\mathbf{u}, \mathbf{v})=0$ and $\cos \varphi=0$. Hence $\varphi=90^{\circ}$. This suggests the definition: vectors \mathbf{u} and \mathbf{v} are called orthogonal, if $(\mathbf{u}, \mathbf{v})=0$.
(5) Triangle inequality:

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

[Try to find the geometrical meaning of this for \mathbb{R}^{2}. Why this inequality is called triangle?] This is a simple consequence of CBS. Indeed, taking squares of both parts of the inequality above, one has

$$
(\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}) \leq(\mathbf{u}, \mathbf{u})+2\|\mathbf{u}\|\|\mathbf{v}\|+(\mathbf{v}, \mathbf{v}) .
$$

The left-hand side is $(\mathbf{u}, \mathbf{u})+2(\mathbf{u}, \mathbf{v})+(\mathbf{v}, \mathbf{v})$, so the inequality becomes

$$
(\mathbf{u}, \mathbf{v}) \leq \mid \mathbf{u}\| \| \mathbf{v} \|,
$$

and the latter follows directly from CBS inequality.
For example, if $\mathbf{u}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \mathbf{v}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$, then $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}7 \\ 7\end{array}\right]$ and $\|\mathbf{u}+\mathbf{v}\|=7 \sqrt{2}$, $\|\mathbf{u}\|+\|\mathbf{v}\|=5+5=10$. So, according to the triangle inequality $7 \sqrt{2} \leq 10$, or after squaring $98 \leq 100$.

We call a set of vectors orthogonal, if each pair of them is orthogonal. There is an important property of such sets:
(6) Orthogonal set of nonzero vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$ is linearly independent.

To show this, suppose

$$
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{k} \mathbf{u}_{k}=\mathbf{0}
$$

Then, for any i :

$$
\left(\mathbf{u}_{i}, a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{k} \mathbf{u}_{k}\right)=\left(\mathbf{u}_{i}, \mathbf{0}\right)=0
$$

The left-hand side is $a_{i}\left(\mathbf{u}_{i}, \mathbf{u}_{i}\right)$, by orthogonality. Since $\mathbf{u}_{i} \neq 0$ by assumption, $\left(\mathbf{u}_{i}, \mathbf{u}_{i}\right)>0$. Then $a_{i}=0$ (for all i). This means that (6) is true.

In particular, if $k=n$ (i.e. the number of vectors in the orthogonal set equal the dimension), then the orthogonal set form a basis (why?).

Especially useful are orthogonal sets $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ in which $\left\|\mathbf{u}_{i}\right\|=1$. Such sets are called orthonormal. For example, the standard basis in \mathbb{R}^{n} is orthonormal. There are many orthonormal bases in \mathbb{R}^{n}.
Example 1. Verify that

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{2}{3} \\
\frac{1}{3}
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
-\frac{2}{3}
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
\frac{1}{3} \\
\frac{2}{3} \\
\frac{2}{3}
\end{array}\right]
$$

is an orthonormal basis in \mathbb{R}^{3}.
In general, given a basis $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ of \mathbb{R}^{n}, in order to find the coordinates of a \mathbf{u} in this basis, we need to solve an $n \times n$ linear system. But when S is orthonormal, the coefficients can be found rather easily.
(7) If a basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ of \mathbb{R}^{n} is orthonormal, then for any vector \mathbf{u} :

$$
\mathbf{u}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n} \mathbf{u}_{n}
$$

where $a_{i}=\left(\mathbf{u}, \mathbf{u}_{i}\right)$.
Indeed, $\left(\mathbf{u}, \mathbf{u}_{i}\right)=\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n} \mathbf{u}_{n}, \mathbf{u}_{i}\right)=a_{1}\left(\mathbf{u}_{1}, \mathbf{u}_{i}\right)+\cdots+a_{n}\left(\mathbf{u}_{n}, \mathbf{u}_{i}\right)=$ $a_{i}\left(\mathbf{u}_{i}, \mathbf{u}_{i}\right)=a_{i}$.

Let's find the coordinates of the vector $\mathbf{u}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$ in the basis from example 1. We have

$$
a_{1}=\left(\mathbf{u}, \mathbf{u}_{1}\right)=3 \cdot \frac{2}{3}+4 \cdot\left(-\frac{2}{3}\right)+5 \cdot \frac{1}{3}=1, a_{2}=\left(\mathbf{u}, \mathbf{u}_{2}\right)=0, a_{3}=\left(\mathbf{u}, \mathbf{u}_{3}\right)=7
$$

In other words,

$$
\mathbf{u}=\mathbf{u}_{1}+7 \mathbf{u}_{3}
$$

