
Lec 31: Inner products.

An inner product on a vector space V assigns to vectors u,v a real number (u,v),
such that

(1) (u,u) ≥ 0 for all u, and (u,u) = 0 if and only if u = 0;

(2) (u,v) = (v,u) for all u,v;

(3) (u, av + bw) = a(u,v) + b(u,w) for all u,v,w.

As you can notice, this definition was suggested by the dot product in Rn. Curiously,
properties (4)-(7) from the previous lecture are valid for any inner product (Rn re-
placed by V ), as they were obtained from the same properties (1)-(3). Thus, we have
notions of length, angle, orthogonal and orthonormal sets, CBS, triangle inequalities
for vectors in any vector space with inner product. The dot product is of course an
inner product, and we call it the standard inner product. But there are much more
examples of inner products.

Example 1. Let V = R2, u =

[
u1

u2

]
, v =

[
v1

v2

]
. Define

(u,v) = 2u1v1 − u1v2 − v1u2 + u2v2.

This is an inner product. Indeed,

(u,u) = 2u2
1 − 2u1u2 + u2

2 = u2
1 + (u1 − u2)

2 ≥ 0.

If (u,u) = 0, then from the above formula u1 = u1 − u2 = 0, which means u = 0.
This implies (1). The symmetry property (2) is straightforward:

(v,u) = 2v1u1 − v1u2 − u1v2 + v2u2 = (u,v),

as well as (3):

(u, av+bw) = 2u1(av1+bw1)−u1(av2+bw2)−(av1+bw1)u2+u2(av2+bw2) = a(u,v)+b(u,w).

The length of vector u =

[
3
4

]
is ‖u‖ =

√
(u,u) =

√
2 · 32 − 2 · 3 · 4 + 42 =

√
10

(note that for the standard product we have ‖u‖ =
√

32 + 44 = 5). The angle ϕ

between u =

[
0
1

]
and v =

[√
3

1

]
is given by

cos ϕ =
(u,v)

‖u‖‖v‖ =
1−√3

1 ·
√

7− 2
√

3
.

[Verify! For the standard product cos ϕ = 0.5, so ϕ = 60◦, while here ϕ = arccos 1−√3

1·
√

7−2
√

3
≈

113◦.]
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Further, when we talk about lengths and angles without specifying the inner prod-
uct, we mean the standard product (hence lengths and angles are usual).

Note that the inner product in our example can be represented as (verify!)

(u,v) = uT Av =
[
u1 u2

] [
2 −1
−1 1

] [
v1

v2

]
.

In general, let S = {e1, e2, . . . , en} be a basis in Rn, and (·, ·) be an inner product.
Then we have

(u,v) = (u1e1 +u2e2 + · · ·+unen, v1e1 +v2e2 + · · ·+vnen) =
n∑

i,j=1

uivj(ei, ej) = uT Av,

where A is the matrix with aij = (ei, ej). Thus all inner products are of the form
(u,v) = uT Av where A is a symmetric matrix. This is called the matrix of the inner
product. For example, the matrix of the standard (dot) product is the identity In.

Note that if we define a function (u,v) by this formula uT Av (where A is a sym-
metric n× n matrix), then it will not necessarily be an inner product, the properties
(2) and (3) hold though. Indeed, take

A =

[
1 0
0 −1

]
,

which corresponds to (u,v) = u1v1 − u2v2. Then (u,u) = −1 < 0 for u =

[
0
1

]
, and

(1) fails. Then A is not a matrix of inner product. Hence the formula (u,v) = uT Av
(with symmetric A) defines an inner product in Rn, if and only if (u,u) = uT Au is
positive for all nonzero u (so, (1) is satisfied). Such symmetric matrices A are called
positive definite. Thus, positive definite matrices correspond to inner products in Rn.

Now look at other examples of inner product spaces (i. e. vector spaces with
an inner product) V . Finite dimensional V with inner product are called Euclidean
spaces. Next is an example of infinite-dimensional inner product space.

Example 2. Let V be the space of all continuous functions on the interval [0, 1] (we
could choose any interval [a, b], a 6= b). Then define

(f, g) =

∫ 1

0

f(t)g(t)dt.

This is an inner product on V . Indeed, property (2) holds by the symmetry of
multiplication of reals, and (3) follows from the properties of integral. Prove (1):

(f, f) =

∫ 1

0

f(t)2dt ≥ 0,

because f(t)2 ≥ 0. Moreover, (f, f) = 0 clearly implies f is a zero function. CBS
inequality in this case is:

|
∫ 1

0

f(t)g(t)dt)| ≤
√∫ 1

0

f(t)2dt

√∫ 1

0

g(t)2dt,
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or, after squaring,

(

∫ 1

0

f(t)g(t)dt))2 ≤
∫ 1

0

f(t)2dt

∫ 1

0

g(t)2dt.

As an exercise, write down the triangle inequality for this inner product.
Note that

(cos 2πt, 1) =

∫ 1

0

cos 2πtdt = 0,

so the functions cos 2πt and 1 are orthogonal. Moreover, one can show that the
infinite set

1, cos 2πt, sin 2πt, cos 4πt, sin 4πt, . . . , cos 2nπt, sin 2nπt, . . .

is orthogonal. Therefore, by (6) (see previous lecture), any its finite subset is linearly
independent.

Example 3. Consider the same inner product but on the space V = Pol(2). For
polynomials p(t), q(t) we have

(p(t), q(t)) =

∫ 1

0

p(t)q(t)dt.

Find an orthogonal basis S = {e1, e2, e3} in V . Take e1 = 1. Now find e2 in the form

at+ b. It must be orthogonal to e1, so
∫ 1

0
at+ bdt = 0, which implies a

2
+ b = 0. Then

we can take e2 = 2t−1. Finally, find e3 in the form at2+bt+c. It must be orthogonal
to e1 and e2. Solving corresponding equations, we find out that the vector 6t2−6t+1
suits for e3. Since S is orthogonal set, it is linearly independent, and hence a basis in
V (because dim V = 3). To make it orthonormal, we need to replace all ei by aiei so
that (aiei, aie1) = 1. For instance, we can take a1 = 1, because (e1, e1) = 1 already.
But

(e2, e2) =

∫ 1

0

(2t− 1)2dt =

∫ 1

0

(4t2 − 4t + 1) = (
4t3

3
− 2t2 + t)|10 =

1

3
,

so we take a2 =
√

3. As an exercise, find a3.
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