Lec 33: Orthogonal complements and projections.

Let S be a set of vectors in an inner product space V. The *orthogonal complement* S^{\perp} to S is the set of vectors in V orthogonal to all vectors in S. The orthogonal

complement to the vector
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 in \mathbb{R}^3 is the set of all $\begin{bmatrix} x\\y\\z \end{bmatrix}$ such that $x+2x+3z=0$,

i. e. a plane. The set S^{\perp} is a subspace in V: if \mathbf{u} and \mathbf{v} are in S^{\perp} , then $a\mathbf{u}+b\mathbf{v}$ is in S^{\perp} for any reals a,b. Indeed, for a \mathbf{w} in S we have $(a\mathbf{u}+b\mathbf{v},\mathbf{w})=a(\mathbf{u},\mathbf{w})+b(\mathbf{v},\mathbf{w})=0$ since $(\mathbf{u},\mathbf{w})=(\mathbf{v},\mathbf{w})=0$. Similarly, if a vector is orthogonal to S, it is orthogonal to $W=\operatorname{Span} S$: $S^{\perp}=W^{\perp}$.

Example 1. Let $V = \mathbb{R}_4$, $W = \text{Span}\{\mathbf{u} = [1 \ 1 \ 0 \ 2], \mathbf{v} = [2 \ 0 \ 1 \ 1], \mathbf{w} = [1 \ -1 \ 1 \ -1]\}$. Find a basis of W^{\perp} .

By the previous, W^{\perp} consist of vectors $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4]$ such that $(\mathbf{x}, \mathbf{u}) = (\mathbf{x}, \mathbf{v}) = (\mathbf{x}, \mathbf{w}) = 0$, i. e.

$$\begin{array}{rcl} x_1 + x_2 + 2x_4 &= 0 \\ 2x_1 + x_3 + x_4 &= 0 \\ x_1 - x_2 + x_3 - x_4 &= 0 \end{array}.$$

In other words, W^{\perp} is the nullspace of the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix}.$$

Its RREF is

$$B = \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Putting r, s free and $x_3 = 2r, x_4 = 2s$, we have

$$\mathbf{x} = [-1 \ 1 \ 2 \ 0]r + [-1 \ -3 \ 0 \ 2]s,$$

hence vectors $[-1\ 1\ 2\ 0]$ and $[-1\ -3\ 0\ 2]$ form a basis in W^{\perp} .

An important property of orthogonal complements is related with the notion of direct sum. If U and W are subspaces in V, then by U+W we denote the span of U and W. Therefore U+W is a subspace in V, and its elements can be written as $\mathbf{u}+\mathbf{w}$ for all \mathbf{u} in U and \mathbf{w} in W. In particular, U+U=U. If $V=\mathbb{R}_4$, U is the subspace of all vectors of the form $[a\ b\ 0\ 0]$, W the subspace of all $[0\ c\ d\ 0]$, then U+W consists of all vectors $[x\ y\ z\ 0]$. In this example U and W intersect by a 1-dimensional subspace. If we take $W=\{[0\ 0\ c\ d]\}$, then U+W=V and the intersection $U\cap W$ consist only of $\mathbf{0}$.

We say that V is the *direct sum* of its subspaces U and W if V = U + W and $U \cap W = \{0\}$. In this case we write $V = U \oplus W$. As an exercise, show that $\dim U + \dim W = \dim V$. For example, $\operatorname{Pol}(2) = \operatorname{Pol}(1) \oplus \operatorname{Span}\{t^2\} = \operatorname{Span}\{1\} \oplus \operatorname{Span}\{t^2\}$.

Theorem. For any subspace U in an inner product space V holds $V = U \oplus U^{\perp}$.

Proof. Show that $U \cap U^{\perp} = \{\mathbf{0}\}$. If **u** belongs to both U and U^{\perp} , then $(\mathbf{u}, \mathbf{u}) = 0$ which implies $\mathbf{u} = \mathbf{0}$ by the definition of inner product.

Now denote $W = U + U^{\perp}$ and prove W = V. We can choose an orthonormal basis in W and extend it to orthonormal basis in V. Thus, if $W \neq V$, there is an element \mathbf{e} in the basis of V orthogonal to W. Since W contains U, \mathbf{e} is orthogonal to U as well, which means \mathbf{e} belongs to U^{\perp} . The latter is a subspace of W, therefore \mathbf{e} is in W, and we arrive at contradiction with choice of \mathbf{e} .

By the theorem, any vector \mathbf{v} in V can be uniquely (why?) represented as $\mathbf{u} + \mathbf{w}$, where $\mathbf{u} \in U$, $\mathbf{w} \in U^{\perp}$. Then vector \mathbf{u} is called the *projection* of \mathbf{v} onto U, and we denote it by $\operatorname{proj}_U \mathbf{v}$. In $V = \mathbb{R}^2$ regarded as plane, let U be the x-line. Then U^{\perp} is y-line and the projection of (x, y) on U is (x, 0).

Projection can also be characterized by the following property: $\mathbf{u} = \operatorname{proj}_U \mathbf{v}$ is the closest to \mathbf{v} vector in U. By being closest we mean the distance $\|\mathbf{u} - \mathbf{v}\|$ is as small as possible. [For the proof see the theorem on p.343 of the book.] We call $\|\mathbf{v} - \operatorname{proj}_U \mathbf{v}\|$ the distance between \mathbf{v} and U. Given an orthonormal basis $S = \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ in U, we have $\mathbf{u} = (\mathbf{u}, \mathbf{e}_1)\mathbf{e}_1 + \dots + (\mathbf{u}, \mathbf{e}_k)\mathbf{e}_k$. Now note that $(\mathbf{u}, \mathbf{e}_i) = (\mathbf{v}, \mathbf{e}_i)$ since $\mathbf{v} = \mathbf{u} + \mathbf{w}$ and \mathbf{w} is orthogonal to U. Thus we have a simple formula for computing the projection:

$$\operatorname{proj}_{U} \mathbf{v} = (\mathbf{v}, \mathbf{e}_{1})\mathbf{e}_{1} + (\mathbf{v}, \mathbf{e}_{2})\mathbf{e}_{2} + \dots + (\mathbf{v}, \mathbf{e}_{k})\mathbf{e}_{k}.$$

Example 2. Let $V = \mathbb{R}^3$, U the orthogonal complement to $\begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix}$.

- (a) Find a basis of U;
- (b) Find an orthonormal basis of U;
- (c) Find the distance between $\mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 7 \end{bmatrix}$ and U.

Subspace U consists of all vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that

$$x + 2y - 5z = 0.$$

Setting y = r, z = s free, we have x = -2r + 5s and

$$\mathbf{x} = \begin{bmatrix} -2\\1\\0 \end{bmatrix} r + \begin{bmatrix} 5\\0\\1 \end{bmatrix} s.$$

Hence vectors
$$\mathbf{u}_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} 5\\0\\1 \end{bmatrix}$ are a basis of U .

Now find an orthonormal basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ of U. Take $\mathbf{e}_1 = \frac{1}{\|\mathbf{u}_1\|} \mathbf{u}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$ to satisfy $\|\mathbf{e}_1\| = 1$. Let's find \mathbf{e}_2 in the form $a\mathbf{u}_1 + b\mathbf{u}_2$. Coefficients a, b can be found from the conditions we want from \mathbf{e}_2 : $(\mathbf{e}_2, \mathbf{e}_1) = 0$ (or equivalently $(\mathbf{e}_2, \mathbf{u}_1) = 0$) and $(\mathbf{e}_2, \mathbf{e}_2) = 0$. Solving this (do it!) we find $\mathbf{e}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\1 \end{bmatrix}$ (or the negative). This finishes (b).

In order to find the distance form \mathbf{v} to U, we have to find the projection $\mathbf{u} = \operatorname{proj}_{U} \mathbf{v}$. As soon as we've found an orthonormal basis $\{\mathbf{e}_{1}, \mathbf{e}_{2}\}$ in U, we can use the formula:

$$\mathbf{u} = (\mathbf{v}, \mathbf{e}_1)\mathbf{e}_1 + (\mathbf{v}, \mathbf{e}_2)\mathbf{e}_2 = -\sqrt{5}\mathbf{e}_1 + 2\sqrt{6}\mathbf{e}_2 = \begin{bmatrix} 4\\3\\2 \end{bmatrix}.$$

We have $\mathbf{w} = \mathbf{v} - \mathbf{u} = \begin{bmatrix} -1 \\ -2 \\ 5 \end{bmatrix}$ and the distance

$$\|\mathbf{v} - \mathbf{u}\| = \|\mathbf{w}\| = \sqrt{30}.$$

Exercise Let V = Pol(2) with the inner product $(p,q) = \int_0^1 p(t)q(t)dt$. Find the approximation of t^2 by a linear polynomial. [In other words, find the projection of t^2 on the subspace Pol(1).] (Answer: $t - \frac{1}{6}$) What is the distance between t^2 and Pol(1)?

Homework # 6 (due 23 November)

- 1. Section 5.3 p. 317 Exercise 3.
- 2. Section 5.3 p. 319 Exercise 36(a).
- 3. Section 5.3 p. 319 Exercise 45. (See p.311 for the definition of positive definite).
- 4. Section 5.5 p. 348 Exercise 7.
- 5. Section 5.5 p. 349 Exercise 16.
- 6. Section 6.1 p.372 Exercise 1.
- 7. Section 6.2 p.387 Exercise 3.