Lec 34: Linear transformations

Linear transformation is a more general version of a matrix transformation. Recall that the latter is a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ represented by a $m \times n$ matrix A, namely $f(\mathbf{x})=A \mathbf{x}$ (vector \mathbf{x} belongs to \mathbb{R}^{n}, hence $A \mathbf{x}$ lies in \mathbb{R}^{m}). Note that f is linear in the following sense: $f(\mathbf{x}+\mathbf{y})=f(\mathbf{x})+f(\mathbf{y})$ and $f(c(\mathbf{x}))=c f(\mathbf{x})$. [Indeed, $A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}$ and $A(c \mathbf{x})=c A \mathbf{x}$.] Now let V and W be vector spaces. A linear transformation of V into W is a function $L: V \rightarrow W$ such that $L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y})$ and $L(c \mathbf{x})=c L(\mathbf{x})$ for all reals c and vectors \mathbf{x}, \mathbf{y}. Equivalently, $L(a \mathbf{x}+b \mathbf{y})=$ $a L(\mathbf{x})+b L(\mathbf{y})$, for all reals a, b and vectors \mathbf{x}, \mathbf{y} in V. When we write $\mathbf{x}+\mathbf{y}$, we mean + in V, and for $L(\mathbf{x})+L(\mathbf{y})$ the + is in W. Linear transformations $L: V \rightarrow V$ (i. e. when $W=V$) are called also linear operators on V.

Examples of linear transformations (LT):
(1) Matrix transformations $L(\mathbf{x})=A \mathbf{x}$. Here $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}, A$ is an $m \times n$ matrix. As we will see, any linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation.
(2) Let W be the vector space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and V its subspace of all differentiable functions. Then $L: V \rightarrow W$ defined by $L(f)=f^{\prime}$ is a linear transformation, because $L(a f+b g)=(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}=a L(f)+b L(g)$.
(3) Let $V=C[a, b]$ be the space of all continuous functions on the interval $[a, b]$. Then $L: V \rightarrow \mathbb{R}, L(f)=\int_{a}^{b} f(x) d x$, is a linear transformation of V into \mathbb{R}.

Any LT takes $\mathbf{0}$ to $\mathbf{0}: L(\mathbf{0})=\mathbf{0}$. In fact, $L(\mathbf{0})=L(0 \cdot \mathbf{0})=0 \cdot L(\mathbf{0})=\mathbf{0}$. For example, $L: \mathbb{R} \rightarrow \mathbb{R}_{2}, L(x)=[x+12 x]$, is not LT, since $L(0)=\left[\begin{array}{ll}10] & =[00] \text {. The }\end{array}\right.$ function $L: \mathbb{R} \rightarrow \mathbb{R}, L(x)=x^{2}$, is not linear: $L(x+y)=(x+y)^{2}, L(x)+L(y)=x^{2}+y^{2}$, hence $L(x+y) \neq L(x)+L(y)$ in general (take, e. g., $x=y=1$).

Due to linearity, any LT $L: V \rightarrow W$ is completely determined by the images of vectors from a basis in V. For example, let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a $L T$, and it is known that $L\left(\mathbf{e}_{1}\right)=2, L\left(\mathbf{e}_{2}\right)=1$, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a standard basis in \mathbb{R}^{2}. Then we can recover L. Say, $L\left(\left[\begin{array}{c}2 \\ -1\end{array}\right]\right)=L\left(2 \mathbf{e}_{1}-\mathbf{e}_{2}\right)=2 L\left(\mathbf{e}_{1}\right)-L\left(\mathbf{e}_{2}\right)=2 \cdot 2-1=3$. Similarly, let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a LT, and $L\left(\mathbf{e}_{1}\right)=\mathbf{w}_{1}, L\left(\mathbf{e}_{2}\right)=\mathbf{w}_{2}, \ldots, L\left(\mathbf{e}_{n}\right)=\mathbf{w}_{n}$. Then for any $\mathbf{x}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{w}_{2}+\cdots+a_{n} \mathbf{e}_{n}$ one has $L(\mathbf{x})=a_{1} \mathbf{w}_{1}+a_{2} \mathbf{w}_{2}+\cdots+a_{n} \mathbf{w}_{n}$. In other words, if we denote $m \times n$ matrix $\left[\begin{array}{llll}\mathbf{w}_{1} & \mathbf{w}_{2} & \ldots & \mathbf{w}_{n}\end{array}\right]$ by A, then $L(\mathbf{x})=A \mathbf{x}$. So, any LT $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix transformation. The corresponding matrix A is called the standard matrix representing L. The word 'standard' here is to indicate that the coordinates of vectors are taken in the standard bases.

Example 1. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the LT defined by

$$
L\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{l}
x+2 z \\
3 z-y
\end{array}\right] .
$$

Find the standard matrix A representing L. We have $L\left(\mathbf{e}_{1}\right)=L\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, $L\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}0 \\ -1\end{array}\right], L\left(\mathbf{e}_{3}\right)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Hence

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 3
\end{array}\right]
$$

