
Matrices of linear transformations

In order to perform calculations about a linear transformation L : V → W one
chooses bases S = {e1, e2, . . . , en} and T = {f1, f2, . . . , fn} of the spaces V and W
respectively. Then we have the isomorphism IS : V → Rn taking a vector v to the
coordinate vector [v]S with respect to basis S. Here n is the dimension of V . Similarly,
one has the isomorphism IT : W → Rm, where m = dim W . Thus we have a diagram
of transformations:

V
L //

IS

²²

W

IT

²²
Rn Rm

.

Since IS is an isomorphism, there is an inverse isomorphism I−1
S : Rn → V . Specifi-

cally, it assigns to an n-vector

[ x1
x2

...
xn

]
the vector x1e1+x2e2+· · ·+xnen in V . Then the

composition of linear transformations I−1
S , L and IT defines the linear transformation

IT ◦ L ◦ I−1
S : Rn → Rm. [Why is the composition of linear transformations a linear

transformation?] Since any transformation of Rn into Rm is a matrix one, we have
IT ◦ L ◦ I−1

S (x) = Ax for some m × n matrix A. In other words, the diagram above
can be completed:

V
L //

IS

²²

W

IT

²²
Rn A // Rm

. (1)

[Here we regard the matrix A as the transformation x 7→ Ax.] This diagram means
that IT ◦ L = A ◦ IS, or equivalently, for any vector v in V :

[L(v)]T = A[v]S.

Matrix A is called the matrix associated with L and bases S and T .

Example 1. Consider the derivation L : Pol(2) → Pol(1), L(f) = f ′. Let’s find the
matrix A associated with L and bases S = {t2, t, 1}, T = {t, 1}.

We have the isomorphisms IS : Pol(2) → R3 and IT : Pol(1) → R2. The first

column of A is the 3-vector A

[
1
0
...
0

]
. Since

[
1
0
...
0

]
= IS(t2), the first column of A

is AIS(t2). By (1), the latter equals IT L(t2) = IT ((t2)′) = IT (2t) = [2t]T = [ 2
0 ].

Similarly, the second column of A is A

[
0
1
...
0

]
= AIS(t) = IT L(t) = IT (1) = [ 0

1 ], and

the third column is zero because IT L(1) = IT (0) = 0. Thus

A =

[
2 0 0
0 1 0

]
.
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We can use A to find values of L. Indeed, by (1), L(f) = I−1
T AIS(f). For example, by

this formula L(3t2 − 2t + 1) = I−1
T A[3t2 − 2t + 1]S = I−1

T A
[

3
−2
1

]
= I−1

T [ 6
−2 ] = 6t− 2,

which agrees with the straightforward computation L(3t2−2t+1) = (3t2−2t+1)′ =
6t− 2.

If we choose other bases S ′, T ′ in V , W , the matrix A′ associated with L will be
different, in general. Take S ′ = {t, 1, t2} and T ′ = {t + 1, t − 1}. As before, the the
first column of A′ is

IT L(t) = IT (1) = [ 0.5
−0.5 ] ,

because 1 = 0.5(t + 1)− 0.5(t− 1). The second column of A is

IT L(1) = IT (0) = [ 0
0 ]

and the third:
IT L(t2) = IT (2t) = [ 1

1 ]

as 2t = (t + 1) + (t− 1). Hence

A′ =
[

0.5 0 1
−0.5 0 1

]
.

Using A′, verify that L(3t2 − 2t + 1) = 6t− 2.

The question arises: is there a formula relating A and A′ (where A′ is the matrix
associated with L and bases S ′, T ′)? We have two diagrams glued:

Rn A′ // Rm

V
L //

IS

²²

IS′

OO

W

IT

²²

IT ′

OO

Rn A // Rm

.

Recall that [x]S = PSS′ [x]S′ , where x is a vector in Rn, PSS′ is the transition matrix
from the basis S ′ to S. In other words, IS = PSS′IS′ . Similarly, IT = PTT ′IT ′ . Thus
we can add additional arrows to our diagram:

Rn

PSS′

""

A′ // Rm

PTT ′

||

V
L //

IS

²²

IS′

OO

W

IT

²²

IT ′

OO

Rn A // Rm

. (2)

By the boundary diagram, we have PTT ′A
′ = APSS′ , or equivalently,

A′ = P−1
TT ′APSS′ . (3)
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As an exercise, verify formula (2) for the example above. [First, show that

PSS′ =




0 0 1
1 0 0
0 1 0


 , PTT ′ =

[
1 1
1 −1

]
.]

An important case is V = W . Then n = m and A is a square matrix. If we choose
S = T , then we simply say that A is the matrix associated with L and basis S. If
S ′ = T ′, then (3) takes form:

A′ = P−1AP, (3)

where P is the transition matrix from S ′ to S. Square matrices A and A′ related
by formula (3) for some invertible matrix P are called similar. We’ve just seen that
matrices associated with operator L with respect to different bases are similar. On
the other hand, suppose n × n matrices A and A′ are related by the formula (3) for
some P . Consider the transformation L : Rn → Rn, L(x) = Ax. Then A is the matrix
associated with L and the standard basis S = {e1, e2, . . . , en} of Rn and A′ is the
matrix associated with L and the basis S ′ = {P (e1), P (e2), . . . , P (en)} (why). Thus
we proved

Theorem 0.1. Two n × n matrices are similar if and only if they are matrices
associated with the same linear operator L : V → V (and some bases S and S ′ of V ).

Lec 36: Kernel and range of a linear transformation

Let L : V → W be a linear transformation. The kernel of L is the set of all vectors
v in V such that L(v) = 0. It is denoted by Ker L. The range Im L of L is the set
of all w in W such that w = L(v) for some v in V . Verify that Ker L and Im L are
subspaces in V and W respectively.

Consider the derivation L : Pol(2) → Pol(2), L(f) = f ′. Its kernel consists of
all ax2 + bx + c with zero derivative, i. e. only of constant polynomials c. Hence
Ker L = Span 1. We also have Im L = Pol(1). Indeed, derivation lessens the degree of
a polynomial, that is why the range can have the linear (and constant) polynomials
only. On the other hand, every linear polynomial is a derivative of a quadratic one:
ax + b = (0.5ax2 + bx)′. Note that dim Ker L = 1 and dim Im L = 2.

Example 2. Find the kernel and the range of the linear transformation L : R3 → R2

given by L(
[

x
y
z

]
) =

[
x+2z
3z−y

]
.

For x =
[

x
y
z

]
we have L(x) = Ax, where

A =

[
1 0 2
0 −1 3

]
.

Hence the kernel of L is the nullspace of A, i. e. the space of solutions to Ax = 0.
The RREF of A is [

1 0 2
0 1 −3

]
,
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and we have z free and x = −2z, y = 3z. Then x =
[ −2

3
1

]
z and Ker L = Span{

[ −2
3
1

]
}.

The range of L is the column space of A (why?), i. e. Im L = Span{[ 1
0 ] , [ 0

−1 ] , [ 2
3 ]}.

Then one can easily see that Im L = R2.

In these examples the following statement holds.

Theorem 0.2. dim Ker L + dim Im L = dim V.

Let’s prove this theorem. Choose bases S and T in V and W respectively. Then
we have the diagram (1). Note that if v belongs to the kernel of L, then x = IS(v) =
[v]S belongs to the nullspace Nullspace A of A. Indeed, Ax = AIS(v) = IT L(v) =
IT (0) = 0. Conversely, if x belongs to the nullspace of A, v = I−1

S (x) is in Ker L:
L(v) = LI−1

S (x) = I−1
T A(x) = I−1

T (0) = 0. This means that Ker L and Null A are
isomorphic (by IS). In particular, dim Ker L = dim Nullspace A = Null A (nullity of
A). Verify, that the ranges of L and A are isomorphic (by IT ). Note that the range
of A is the span of Ae1, . . . , Aen, where e1, . . . , en is a basis in Rn (why?). Taking
standard basis, this span is exactly the column space of A, and its dimension is, by
definition, rank A. Hence dim Im L = rank A. Thus the formula in the theorem turns
to

Null A + rank A = n,

which is known. The theorem is proved.
As a consequence of the correspondence between kernels of operators and nullspaces

of their matrices, ranges and column spaces (see the reasoning above), and the theo-
rem (1), we obtain:

Theorem 0.3. Similar matrices have the same nullity and rank.

Lec 37: Eigenvalues and eigenvectors of linear operators.

Let L : V → V be a linear operator. A real number λ is called an eigenvalue of L, if
L(v) = λv for some nonzero vector v. Then v is called an eigenvector associated with
λ. [Note that all eigenvectors must be nonzero.] The set of all eigenvectors associated
with an eigenvalue λ, plus the zero vector, is called the eigenspace associated with
λ, and is denoted by V (λ). One can show (do it!) that V (λ) is a subspace of V .
In particular one can find a basis in V (λ) and dim V (λ). Eigenspaces corresponding
to different eigenvalues intersect only by 0. This is because λv = µv implies λ = µ
for a nonzero v. Moreover, one can show that eigenvectors associated with different
eigenvalues are linearly independent (try to do this).

The scaling operator L : V → V , L(v) = 2v, has the only eigenvalue, which is 2.
Indeed, V (2) = V . For more elaborated examples we need to develop some machinery.
First, consider the case of matrix operators L : Rn → Rn, L(x) = Ax for an n × n
matrix A. We define the eigenvalues and eigenvectors of the matrix A to be those of
the operator L.

So, λ is an eigenvalue of A if
Ax = λx
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for some nonzero n-vector x. We can rewrite this as

(A− λIn)x = 0.

This is equivalent to singularity of A− λIn, i. e.

det(A− λIn) = 0.

If we regard λ as variable, the left-hand side of the equation above is a polynomial
p(λ) of degree n. This is called the characteristic polynomial of A. We proved

Theorem 0.4. The eigenvalues of a matrix A are exactly the roots of its characteristic
polynomial p(λ). The eigenspace Rn(λ) is the nullspace of the matrix A− λIn.

Example 3. If A is a diagonal matrix with the diagonal entries d1, d2, . . . , dn, then
p(λ) = (d1 − λ)(d2 − λ) · · · (dn − λ). Hence the eigenvalues of A are exactly the
diagonal entries of A. The eigenspace Rn(di) is spanned by the ith standard vector
ei.

Example 4. Let

A =

[
0 1
1 0

]
.

Then

A− λI2 =

[−λ 1
1 −λ

]

and p(λ) = det(A− λI2) = λ2 − 1 = (λ− 1)(λ + 1). Then the eigenvalues of A are 1
and −1. Find a basis in R2(1). According to the theorem above, it must be a basis
of the nullspace of

A− 1 · I2 =

[−1 1
1 −1

]
.

Verify that the vector x = [ 1
1 ] represents a basis of the nullspace. Similarly, check

that R2(−1) is spanned by [ 1
−1 ].

Example 5. Let

A =

[
0 −1
1 0

]
.

We have p(λ) = λ2 + 1. Since p does not have real roots, there are no eigenvalues
(and eigenvectors) of A.

Example 6. Let

A =

[
1 1
0 1

]
.

We have p(λ) = (1 − λ)2. Then the only eigenvalue is 1. Verify that R2(1) is one-
dimensional with a basis [ 1

0 ].
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Most examples are 2× 2 matrices since otherwise p(λ) has degree 3 or more, and
the roots of such a polynomial may not be easy to find. In some some special cases
it is not hard though. Try to find eigenvalues and bases in eigenspaces for the matrix




0 0 9
0 2 0
1 0 0


 .

Example 7. Let

A =




0 0 0
0 1 0
1 0 1


 .

We have p(λ) = −λ(1 − λ)2, and the eigenvalues are 0 and 1. Check that R3(0) =

Span{
[

1
0
−1

]
} and R3(1) = Span{

[
0
1
0

]
,
[

0
0
1

]
}.

Now, let’s see what happens for L : V → V . We can choose a basis S in V and
consider the matrix A associated with L and S. Then the eigenvalues of L coincide
with those of A. Indeed, by the diagram

V
L //

IS

²²

V

IS

²²
Rn A // Rm

,

if L(v) = λv, then for x = IS(v) = [v]S one has: A(x) = AIS(v) = ISL(v) =
IS(λv) = λIS(v) = λx. So, if λ is an eigenvalue of L, then it is an eigenvalue of A.
And the converse is true (why?). The correspondence v ↔ x above is actually an
isomorphism between the eigenspaces V (λ) and Rn(λ) of L and A respectively.

Example 8. Let L : Pol(2) → Pol(2) be given by L(at2 + bt+ c) = ct2 +(b+2c)t+ c.
Find the eigenvalues of L and the corresponding eigenspaces. In the basis S =
{t2, t, 1} the associated matrix is

A =




0 0 1
0 1 2
0 0 1


 .

We have p(λ) = −λ(1 − λ)2. Then the eigenvalues of A are 0 and 1. Solving

the corresponding homogeneous systems, we get R3(0) = Span{
[

1
0
0

]
} and R3(0) =

Span{
[

0
1
0

]
}. Applying the isomorphism I−1

S , we obtain that V (0) is spanned by t2

and V (1) — by t, where V = Pol(2).

It follows from Theorem 1 and the discussion above that

Theorem 0.5. Similar matrices have the same eigenvalues.
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Another way to prove this is to show that the characteristic polynomials p(λ)
and q(λ) of similar matrices A and B coincide. In fact, if A = PBP−1, then
p(λ) = det(A−λIn) = det(PBP−1−λIn) = det(PBP−1−P (λIn)P−1) = det(P (B−
λIn)P−1) = det(P ) det(B − λIn) det(P )−1 = det(B − λIn) = q(λ).

Lec 38: Diagonalizable operators.

An important class of linear operators is that of diagonalizable ones (in fact, they
are a majority of all operators). A linear operator L : V → V is called diagonalizable, if
it’s matrix in some basis is a diagonal one. A square matrix A is called diagonalizable,
if it is similar to a diagonal matrix.

Theorem 0.6. Let L : V → V be a linear operator and A its associated matrix with
respect to a basis S of V . The following statements are equivalent:

(1) L is diagonalizable;

(2) A is diagonalizable;

(3) there is a basis of V consisting of eigenvectors for A;

(4) there is a basis of V consisting of eigenvectors for L.

Proof. If L is diagonalizable, there is a basis E of V for which the associated matrix
D is diagonal. Then if P = PSE is the transition matrix from E to S, we have by
formula (3): D = P−1AP (or A = PDP−1). Hence A and D are similar, which
means that A is diagonalizable.

Now let A be diagonalizable. Then for some P one has P−1AP = D — a diagonal
matrix. By example 3, the standard basis {e1, . . . , en} of Rn consists of eigenvectors
for D. Then {Pe1, . . . , Pen} is a basis (since P is invertible). Moreover, its vectors
are eigenvectors for A. Indeed, if Dei = λiεi, then A(Pei) = (AP )ei = (PD)ei =
P (λiei) = λi(Pei).

The rest implications (3) ⇒ (4) and (4) ⇒ (1) are left as exercises.

Using statement (3) of the theorem, one can show that in examples 3,4 and 7
the matrices are diagonalizable. Say, in example 4, A is similar to the diagonal
matrix D = [ 1 0

0 −1 ]}: A = P−1DP , where the transition matrix P has corresponding
eigenvectors as columns: P = [ 1 1

1 −1 ]}. One could also take P = [ 2 2
3 −3 ]}. In examples

5,6,8 the matrices (and linear operators) are not diagonalizable (why?).
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