Matrices of linear transformations

In order to perform calculations about a linear transformation $L: V \rightarrow W$ one chooses bases $S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ and $T=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{n}\right\}$ of the spaces V and W respectively. Then we have the isomorphism $I_{S}: V \rightarrow \mathbb{R}^{n}$ taking a vector \mathbf{v} to the coordinate vector $[\mathbf{v}]_{S}$ with respect to basis S. Here n is the dimension of V. Similarly, one has the isomorphism $I_{T}: W \rightarrow \mathbb{R}^{m}$, where $m=\operatorname{dim} W$. Thus we have a diagram of transformations:

Since I_{S} is an isomorphism, there is an inverse isomorphism $I_{S}^{-1}: \mathbb{R}^{n} \rightarrow V$. Specifically, it assigns to an n-vector $\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ the vector $x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}$ in V. Then the composition of linear transformations I_{S}^{-1}, L and I_{T} defines the linear transformation $I_{T} \circ L \circ I_{S}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. [Why is the composition of linear transformations a linear transformation?] Since any transformation of \mathbb{R}^{n} into \mathbb{R}^{m} is a matrix one, we have $I_{T} \circ L \circ I_{S}^{-1}(\mathbf{x})=A \mathbf{x}$ for some $m \times n$ matrix A. In other words, the diagram above can be completed:

[Here we regard the matrix A as the transformation $\mathbf{x} \mapsto A \mathbf{x}$.] This diagram means that $I_{T} \circ L=A \circ I_{S}$, or equivalently, for any vector \mathbf{v} in V :

$$
[L(\mathbf{v})]_{T}=A[\mathbf{v}]_{S} .
$$

Matrix A is called the matrix associated with L and bases S and T.
Example 1. Consider the derivation $L: \operatorname{Pol}(2) \rightarrow \operatorname{Pol}(1), L(f)=f^{\prime}$. Let's find the matrix A associated with L and bases $S=\left\{t^{2}, t, 1\right\}, T=\{t, 1\}$.

We have the isomorphisms $I_{S}: \operatorname{Pol}(2) \rightarrow \mathbb{R}^{3}$ and $I_{T}: \operatorname{Pol}(1) \rightarrow \mathbb{R}^{2}$. The first column of A is the 3 -vector $A\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$. Since $\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]=I_{S}\left(t^{2}\right)$, the first column of A is $A I_{S}\left(t^{2}\right)$. By (1), the latter equals $I_{T} L\left(t^{2}\right)=I_{T}\left(\left(t^{2}\right)^{\prime}\right)=I_{T}(2 t)=[2 t]_{T}=\left[\begin{array}{c}2 \\ 0\end{array}\right]$. Similarly, the second column of A is $A\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right]=A I_{S}(t)=I_{T} L(t)=I_{T}(1)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and the third column is zero because $I_{T} L(1)=I_{T}(0)=\mathbf{0}$. Thus

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

We can use A to find values of L. Indeed, by (1), $L(f)=I_{T}^{-1} A I_{S}(f)$. For example, by this formula $L\left(3 t^{2}-2 t+1\right)=I_{T}^{-1} A\left[3 t^{2}-2 t+1\right]_{S}=I_{T}^{-1} A\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]=I_{T}^{-1}\left[\begin{array}{c}6 \\ -2\end{array}\right]=6 t-2$, which agrees with the straightforward computation $L\left(3 t^{2}-2 t+1\right)=\left(3 t^{2}-2 t+1\right)^{\prime}=$ $6 t-2$.

If we choose other bases S^{\prime}, T^{\prime} in V, W, the matrix A^{\prime} associated with L will be different, in general. Take $S^{\prime}=\left\{t, 1, t^{2}\right\}$ and $T^{\prime}=\{t+1, t-1\}$. As before, the the first column of A^{\prime} is

$$
I_{T} L(t)=I_{T}(1)=\left[\begin{array}{c}
0.5 \\
-0.5
\end{array}\right],
$$

because $1=0.5(t+1)-0.5(t-1)$. The second column of A is

$$
I_{T} L(1)=I_{T}(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and the third:

$$
I_{T} L\left(t^{2}\right)=I_{T}(2 t)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

as $2 t=(t+1)+(t-1)$. Hence

$$
A^{\prime}=\left[\begin{array}{ccc}
0.5 & 0 & 1 \\
-0.5 & 0 & 1
\end{array}\right]
$$

Using A^{\prime}, verify that $L\left(3 t^{2}-2 t+1\right)=6 t-2$.
The question arises: is there a formula relating A and A^{\prime} (where A^{\prime} is the matrix associated with L and bases S^{\prime}, T^{\prime})? We have two diagrams glued:

Recall that $[\mathbf{x}]_{S}=P_{S S^{\prime}}[\mathbf{x}]_{S^{\prime}}$, where \mathbf{x} is a vector in $\mathbb{R}^{n}, P_{S S^{\prime}}$ is the transition matrix from the basis S^{\prime} to S. In other words, $I_{S}=P_{S S^{\prime}} I_{S^{\prime}}$. Similarly, $I_{T}=P_{T T^{\prime}} I_{T^{\prime}}$. Thus we can add additional arrows to our diagram:

By the boundary diagram, we have $P_{T T^{\prime}} A^{\prime}=A P_{S S^{\prime}}$, or equivalently,

$$
\begin{equation*}
A^{\prime}=P_{T T^{\prime}}^{-1} A P_{S S^{\prime}} \tag{3}
\end{equation*}
$$

As an exercise, verify formula (2) for the example above. [First, show that

$$
\left.P_{S S^{\prime}}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], P_{T T^{\prime}}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .\right]
$$

An important case is $V=W$. Then $n=m$ and A is a square matrix. If we choose $S=T$, then we simply say that A is the matrix associated with L and basis S. If $S^{\prime}=T^{\prime}$, then (3) takes form:

$$
\begin{equation*}
A^{\prime}=P^{-1} A P \tag{3}
\end{equation*}
$$

where P is the transition matrix from S^{\prime} to S. Square matrices A and A^{\prime} related by formula (3) for some invertible matrix P are called similar. We've just seen that matrices associated with operator L with respect to different bases are similar. On the other hand, suppose $n \times n$ matrices A and A^{\prime} are related by the formula (3) for some P. Consider the transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$. Then A is the matrix associated with L and the standard basis $S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ of \mathbb{R}^{n} and A^{\prime} is the matrix associated with L and the basis $S^{\prime}=\left\{P\left(\mathbf{e}_{1}\right), P\left(\mathbf{e}_{2}\right), \ldots, P\left(\mathbf{e}_{n}\right)\right\}$ (why). Thus we proved

Theorem 0.1. Two $n \times n$ matrices are similar if and only if they are matrices associated with the same linear operator $L: V \rightarrow V$ (and some bases S and S^{\prime} of V).

Lec 36: Kernel and range of a linear transformation

Let $L: V \rightarrow W$ be a linear transformation. The kernel of L is the set of all vectors \mathbf{v} in V such that $L(\mathbf{v})=\mathbf{0}$. It is denoted by $\operatorname{Ker} L$. The range $\operatorname{Im} L$ of L is the set of all \mathbf{w} in W such that $\mathbf{w}=L(\mathbf{v})$ for some \mathbf{v} in V. Verify that $\operatorname{Ker} L$ and $\operatorname{Im} L$ are subspaces in V and W respectively.

Consider the derivation $L: \operatorname{Pol}(2) \rightarrow \operatorname{Pol}(2), L(f)=f^{\prime}$. Its kernel consists of all $a x^{2}+b x+c$ with zero derivative, i. e. only of constant polynomials c. Hence $\operatorname{Ker} L=\operatorname{Span} 1$. We also have $\operatorname{Im} L=\operatorname{Pol}(1)$. Indeed, derivation lessens the degree of a polynomial, that is why the range can have the linear (and constant) polynomials only. On the other hand, every linear polynomial is a derivative of a quadratic one: $a x+b=\left(0.5 a x^{2}+b x\right)^{\prime}$. Note that $\operatorname{dim} \operatorname{Ker} L=1$ and $\operatorname{dim} \operatorname{Im} L=2$.

Example 2. Find the kernel and the range of the linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $L\left(\left[\begin{array}{c}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+2 z \\ 3 z-y\end{array}\right]$.

For $\mathbf{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ we have $L(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 3
\end{array}\right]
$$

Hence the kernel of L is the nullspace of A, i. e. the space of solutions to $A \mathbf{x}=\mathbf{0}$. The RREF of A is

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3
\end{array}\right]
$$

and we have z free and $x=-2 z, y=3 z$. Then $\mathbf{x}=\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right] z$ and $\operatorname{Ker} L=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]\right\}$.
The range of L is the column space of A (why?), i. e. $\operatorname{Im} L=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$. Then one can easily see that $\operatorname{Im} L=\mathbb{R}^{2}$.

In these examples the following statement holds.
Theorem 0.2. $\operatorname{dim} \operatorname{Ker} L+\operatorname{dim} \operatorname{Im} L=\operatorname{dim} V$.
Let's prove this theorem. Choose bases S and T in V and W respectively. Then we have the diagram (1). Note that if \mathbf{v} belongs to the kernel of L, then $\mathbf{x}=I_{S}(\mathbf{v})=$ $[v]_{S}$ belongs to the nullspace Nullspace A of A. Indeed, $A \mathbf{x}=A I_{S}(\mathbf{v})=I_{T} L(\mathbf{v})=$ $I_{T}(\mathbf{0})=\mathbf{0}$. Conversely, if \mathbf{x} belongs to the nullspace of $A, \mathbf{v}=I_{S}^{-1}(\mathbf{x})$ is in Ker L : $L(\mathbf{v})=L I_{S}^{-1}(\mathbf{x})=I_{T}^{-1} A(\mathbf{x})=I_{T}^{-1}(\mathbf{0})=\mathbf{0}$. This means that Ker L and Null A are isomorphic (by I_{S}). In particular, $\operatorname{dim} \operatorname{Ker} L=\operatorname{dim} \operatorname{Nullspace} A=\operatorname{Null} A$ (nullity of $A)$. Verify, that the ranges of L and A are isomorphic (by I_{T}). Note that the range of A is the span of $A \mathbf{e}_{1}, \ldots, A \mathbf{e}_{n}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is a basis in \mathbb{R}^{n} (why?). Taking standard basis, this span is exactly the column space of A, and its dimension is, by definition, $\operatorname{rank} A$. Hence $\operatorname{dim} \operatorname{Im} L=\operatorname{rank} A$. Thus the formula in the theorem turns to

$$
\operatorname{Null} A+\operatorname{rank} A=n,
$$

which is known. The theorem is proved.
As a consequence of the correspondence between kernels of operators and nullspaces of their matrices, ranges and column spaces (see the reasoning above), and the theorem (1), we obtain:

Theorem 0.3. Similar matrices have the same nullity and rank.

Lec 37: Eigenvalues and eigenvectors of linear operators.

Let $L: V \rightarrow V$ be a linear operator. A real number λ is called an eigenvalue of L, if $L(\mathbf{v})=\lambda \mathbf{v}$ for some nonzero vector \mathbf{v}. Then \mathbf{v} is called an eigenvector associated with λ. [Note that all eigenvectors must be nonzero.] The set of all eigenvectors associated with an eigenvalue λ, plus the zero vector, is called the eigenspace associated with λ, and is denoted by $V(\lambda)$. One can show (do it!) that $V(\lambda)$ is a subspace of V. In particular one can find a basis in $V(\lambda)$ and $\operatorname{dim} V(\lambda)$. Eigenspaces corresponding to different eigenvalues intersect only by $\mathbf{0}$. This is because $\lambda \mathbf{v}=\mu \mathbf{v}$ implies $\lambda=\mu$ for a nonzero \mathbf{v}. Moreover, one can show that eigenvectors associated with different eigenvalues are linearly independent (try to do this).

The scaling operator $L: V \rightarrow V, L(\mathbf{v})=2 \mathbf{v}$, has the only eigenvalue, which is 2 . Indeed, $V(2)=V$. For more elaborated examples we need to develop some machinery. First, consider the case of matrix operators $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, L(\mathbf{x})=A \mathbf{x}$ for an $n \times n$ matrix A. We define the eigenvalues and eigenvectors of the matrix A to be those of the operator L.

So, λ is an eigenvalue of A if

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

for some nonzero n-vector \mathbf{x}. We can rewrite this as

$$
\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0} .
$$

This is equivalent to singularity of $A-\lambda I_{n}$, i. e.

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

If we regard λ as variable, the left-hand side of the equation above is a polynomial $p(\lambda)$ of degree n. This is called the characteristic polynomial of A. We proved

Theorem 0.4. The eigenvalues of a matrix A are exactly the roots of its characteristic polynomial $p(\lambda)$. The eigenspace $\mathbb{R}^{n}(\lambda)$ is the nullspace of the matrix $A-\lambda I_{n}$.

Example 3. If A is a diagonal matrix with the diagonal entries $d_{1}, d_{2}, \ldots, d_{n}$, then $p(\lambda)=\left(d_{1}-\lambda\right)\left(d_{2}-\lambda\right) \cdots\left(d_{n}-\lambda\right)$. Hence the eigenvalues of A are exactly the diagonal entries of A. The eigenspace $\mathbb{R}^{n}\left(d_{i}\right)$ is spanned by the $i^{\text {th }}$ standard vector \mathbf{e}_{i}.

Example 4. Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Then

$$
A-\lambda I_{2}=\left[\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right]
$$

and $p(\lambda)=\operatorname{det}\left(A-\lambda I_{2}\right)=\lambda^{2}-1=(\lambda-1)(\lambda+1)$. Then the eigenvalues of A are 1 and -1 . Find a basis in $\mathbb{R}^{2}(1)$. According to the theorem above, it must be a basis of the nullspace of

$$
A-1 \cdot I_{2}=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] .
$$

Verify that the vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ represents a basis of the nullspace. Similarly, check that $\mathbb{R}^{2}(-1)$ is spanned by $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Example 5. Let

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

We have $p(\lambda)=\lambda^{2}+1$. Since p does not have real roots, there are no eigenvalues (and eigenvectors) of A.

Example 6. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

We have $p(\lambda)=(1-\lambda)^{2}$. Then the only eigenvalue is 1 . Verify that $\mathbb{R}^{2}(1)$ is onedimensional with a basis $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Most examples are 2×2 matrices since otherwise $p(\lambda)$ has degree 3 or more, and the roots of such a polynomial may not be easy to find. In some some special cases it is not hard though. Try to find eigenvalues and bases in eigenspaces for the matrix

$$
\left[\begin{array}{lll}
0 & 0 & 9 \\
0 & 2 & 0 \\
1 & 0 & 0
\end{array}\right] .
$$

Example 7. Let

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

We have $p(\lambda)=-\lambda(1-\lambda)^{2}$, and the eigenvalues are 0 and 1 . Check that $\mathbb{R}^{3}(0)=$ $\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$ and $\mathbb{R}^{3}(1)=\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.

Now, let's see what happens for $L: V \rightarrow V$. We can choose a basis S in V and consider the matrix A associated with L and S. Then the eigenvalues of L coincide with those of A. Indeed, by the diagram

if $L(\mathbf{v})=\lambda \mathbf{v}$, then for $\mathbf{x}=I_{S}(\mathbf{v})=[\mathbf{v}]_{S}$ one has: $A(\mathbf{x})=A I_{S}(\mathbf{v})=I_{S} L(\mathbf{v})=$ $I_{S}(\lambda \mathbf{v})=\lambda I_{S}(\mathbf{v})=\lambda \mathbf{x}$. So, if λ is an eigenvalue of L, then it is an eigenvalue of A. And the converse is true (why?). The correspondence $\mathbf{v} \leftrightarrow \mathbf{x}$ above is actually an isomorphism between the eigenspaces $V(\lambda)$ and $\mathbb{R}^{n}(\lambda)$ of L and A respectively.

Example 8. Let $L: \operatorname{Pol}(2) \rightarrow \operatorname{Pol}(2)$ be given by $L\left(a t^{2}+b t+c\right)=c t^{2}+(b+2 c) t+c$. Find the eigenvalues of L and the corresponding eigenspaces. In the basis $S=$ $\left\{t^{2}, t, 1\right\}$ the associated matrix is

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

We have $p(\lambda)=-\lambda(1-\lambda)^{2}$. Then the eigenvalues of A are 0 and 1 . Solving the corresponding homogeneous systems, we get $\mathbb{R}^{3}(0)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ and $\mathbb{R}^{3}(0)=$ $\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$. Applying the isomorphism I_{S}^{-1}, we obtain that $V(0)$ is spanned by t^{2} and $V(1)$ - by t, where $V=\operatorname{Pol}(2)$.

It follows from Theorem 1 and the discussion above that
Theorem 0.5. Similar matrices have the same eigenvalues.

Another way to prove this is to show that the characteristic polynomials $p(\lambda)$ and $q(\lambda)$ of similar matrices A and B coincide. In fact, if $A=P B P^{-1}$, then $p(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}\left(P B P^{-1}-\lambda I_{n}\right)=\operatorname{det}\left(P B P^{-1}-P\left(\lambda I_{n}\right) P^{-1}\right)=\operatorname{det}(P(B-$ $\left.\left.\lambda I_{n}\right) P^{-1}\right)=\operatorname{det}(P) \operatorname{det}\left(B-\lambda I_{n}\right) \operatorname{det}(P)^{-1}=\operatorname{det}\left(B-\lambda I_{n}\right)=q(\lambda)$.

Lec 38: Diagonalizable operators.

An important class of linear operators is that of diagonalizable ones (in fact, they are a majority of all operators). A linear operator $L: V \rightarrow V$ is called diagonalizable, if it's matrix in some basis is a diagonal one. A square matrix A is called diagonalizable, if it is similar to a diagonal matrix.

Theorem 0.6. Let $L: V \rightarrow V$ be a linear operator and A its associated matrix with respect to a basis S of V. The following statements are equivalent:
(1) L is diagonalizable;
(2) A is diagonalizable;
(3) there is a basis of V consisting of eigenvectors for A;
(4) there is a basis of V consisting of eigenvectors for L.

Proof. If L is diagonalizable, there is a basis E of V for which the associated matrix D is diagonal. Then if $P=P_{S E}$ is the transition matrix from E to S, we have by formula (3): $D=P^{-1} A P$ (or $A=P D P^{-1}$). Hence A and D are similar, which means that A is diagonalizable.

Now let A be diagonalizable. Then for some P one has $P^{-1} A P=D$ - a diagonal matrix. By example 3 , the standard basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ of \mathbb{R}^{n} consists of eigenvectors for D. Then $\left\{P \mathbf{e}_{1}, \ldots, P \mathbf{e}_{n}\right\}$ is a basis (since P is invertible). Moreover, its vectors are eigenvectors for A. Indeed, if $D \mathbf{e}_{i}=\lambda_{i} \varepsilon_{i}$, then $A\left(P \mathbf{e}_{i}\right)=(A P) \mathbf{e}_{i}=(P D) \mathbf{e}_{i}=$ $P\left(\lambda_{i} \mathbf{e}_{i}\right)=\lambda_{i}\left(P \mathbf{e}_{i}\right)$.

The rest implications $(3) \Rightarrow(4)$ and $(4) \Rightarrow(1)$ are left as exercises.
Using statement (3) of the theorem, one can show that in examples 3,4 and 7 the matrices are diagonalizable. Say, in example $4, A$ is similar to the diagonal matrix $\left.D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right\}: A=P^{-1} D P$, where the transition matrix P has corresponding eigenvectors as columns: $\left.P=\left[\begin{array}{ccc}1 & 1 \\ 1 & -1\end{array}\right]\right\}$. One could also take $\left.P=\left[\begin{array}{cc}2 & 2 \\ 3 & -3\end{array}\right]\right\}$. In examples $5,6,8$ the matrices (and linear operators) are not diagonalizable (why?).

