Matrices of linear transformations

In order to perform calculations about a linear transformation L: V — W one
chooses bases S = {ej,ey,...,e,} and T = {f},f5,... £,} of the spaces V and W
respectively. Then we have the isomorphism Ig: V' — R"™ taking a vector v to the
coordinate vector [v]g with respect to basis S. Here n is the dimension of V. Similarly,
one has the isomorphism Ip: W — R™, where m = dim W. Thus we have a diagram
of transformations:

V—L-w .
zsl lzT
R R™

Since [g is an isomorphism, there is an inverse isomorphism Ig L. R® — V. Specifi-
x1
2

cally, it assigns to an n-vector [ : ] the vector x1e;+xes+---+x,e, in V. Then the
@n

composition of linear transformations /¢ ! L and Iy defines the linear transformation

IpoLolg ' R — R™. [Why is the composition of linear transformations a linear

transformation?] Since any transformation of R™ into R™ is a matrix one, we have

Ir o Lo Ig'(x) = Ax for some m x n matrix A. In other words, the diagram above

can be completed:
VT (1)

s ) |1

R’FL > Rm

[Here we regard the matrix A as the transformation x — Ax.] This diagram means
that Ir o L = Ao Ig, or equivalently, for any vector v in V:

[L(v)]r = Alv]s.
Matrix A is called the matriz associated with L and bases S and T.

Example 1. Consider the derivation L: Pol(2) — Pol(1), L(f) = f’. Let’s find the
matrix A associated with L and bases S = {t*,t,1}, T = {t,1}.

We have the isomorphisms Ig: Pol(2) — R?® and I7: Pol(1) — R2 The first
| |

column of A is the 3-vector A Since = Ig(t?), the first column of A

o o
is AIs(t*). By (1), the latter equals IrL(t*) = Ip((t?)) = Ir(2t) = [2t]r = [3].
0

Similarly, the second column of A is A = Als(t) = I7L(t) = Ir(1) = [9], and

0
the third column is zero because I7L(1) = Ir(0) = 0. Thus




We can use A to find values of L. Indeed, by (1), L(f) = I:' Als(f). For example, by
this formula L(3t2 — 2 + 1) = I A[3t2 — 2t + 1]s = I A [—i’z] = I;'[ 5] =6t—2,
which agrees with the straightforward computation L(3t? —2t+1) = (3t* =2t + 1) =
6t — 2.

If we choose other bases S’, T in V', W, the matrix A" associated with L will be
different, in general. Take S’ = {t,1,t?} and T" = {t + 1,t — 1}. As before, the the
first column of A’ is

ITL(t) = Ir(1) = [ %3],
because 1 = 0.5(t + 1) — 0.5(¢ — 1). The second column of A is
IrL(1) = I7(0) = [§]

and the third:
IrL(t%) = Ip(2t) = [1]

as 2t = (t+ 1)+ (t — 1). Hence
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Using A’ verify that L(3t* — 2t + 1) = 6t — 2.

The question arises: is there a formula relating A and A" (where A’ is the matrix
associated with L and bases S’, T")? We have two diagrams glued:

R~ Rm

IS/T TIT/
L

V——W
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Rn > Rm

Recall that [x|g = Pss/[x]s/, where x is a vector in R", Pgg is the transition matrix
from the basis S’ to S. In other words, Ig = Pgg/Ig. Similarly, I+ = PprpI7. Thus
we can add additional arrows to our diagram:

R" —*>R" - (2)

/T L TIT'

ory
Pggr | V——W Pros

\
o

]RTL > Rm
By the boundary diagram, we have Prpr A’ = APgg, or equivalently,

A = Pl APsg. (3)
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As an exercise, verify formula (2) for the example above. [First, show that

0
Pssr =1
0

_ O O

1
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An important case is V' = W. Then n = m and A is a square matrix. If we choose

S =T, then we simply say that A is the matrix associated with L and basis S. If
S" =T, then (3) takes form:

A =P AP, (3)

where P is the transition matrix from S’ to S. Square matrices A and A’ related
by formula (3) for some invertible matrix P are called similar. We've just seen that
matrices associated with operator L with respect to different bases are similar. On
the other hand, suppose n x n matrices A and A’ are related by the formula (3) for
some P. Consider the transformation L: R” — R", L(x) = Ax. Then A is the matrix
associated with L and the standard basis S = {ej,es,...,e,} of R” and A’ is the
matrix associated with L and the basis S’ = {P(e;), P(es), ..., P(e,)} (why). Thus

we proved

Theorem 0.1. Two n x n matrices are similar if and only if they are matrices
associated with the same linear operator L: V' — V' (and some bases S and S" of V).

Lec 36: Kernel and range of a linear transformation

Let L: V — W be a linear transformation. The kernel of L is the set of all vectors
v in V such that L(v) = 0. It is denoted by Ker L. The range Im L of L is the set
of all w in W such that w = L(v) for some v in V. Verify that Ker L and Im L are
subspaces in V' and W respectively.

Consider the derivation L: Pol(2) — Pol(2), L(f) = f’. Its kernel consists of
all ax? + bx + ¢ with zero derivative, i. e. only of constant polynomials c. Hence
Ker L = Span 1. We also have Im L = Pol(1). Indeed, derivation lessens the degree of
a polynomial, that is why the range can have the linear (and constant) polynomials
only. On the other hand, every linear polynomial is a derivative of a quadratic one:
ax + b= (0.5ax? + bz)'. Note that dimKer L = 1 and dim Im L = 2.

Example 2. Find the kernel and the range of the linear transformation L: R — R?
given by L(|§|) = [5:%].

y
é} we have L(x) = Ax, where

1 0 2
A= {0 -1 3} '
Hence the kernel of L is the nullspace of A, i. e. the space of solutions to Ax = 0.
The RREF of A is
1 0 2
0 1 =3|"’



and we have z free and x = —2z, y = 32. Then x = [?] zand Ker L = Span{[gaz}
i.e. ImL = Span{[}],[%],[3]

}.
The range of L is the column space of A (why?), }.
Then one can easily see that Im L = R2.

In these examples the following statement holds.
Theorem 0.2. dim Ker L + dimIm L = dim V.

Let’s prove this theorem. Choose bases S and T in V and W respectively. Then
we have the diagram (1). Note that if v belongs to the kernel of L, then x = Ig(v) =
[v]s belongs to the nullspace Nullspace A of A. Indeed, Ax = Alg(v) = IrL(v) =
Ir(0) = 0. Conversely, if x belongs to the nullspace of A, v = I5'(x) is in Ker L:
L(v) = LIg'(x) = I;'A(x) = I1:'(0) = 0. This means that Ker L and Null A are
isomorphic (by Ig). In particular, dim Ker L = dim Nullspace A = Null A (nullity of
A). Verify, that the ranges of L and A are isomorphic (by Ir). Note that the range
of A is the span of Aey,..., Ae,, where eq,...,e, is a basis in R"” (why?). Taking
standard basis, this span is exactly the column space of A, and its dimension is, by
definition, rank A. Hence dim Im L = rank A. Thus the formula in the theorem turns
to

Null A + rank A = n,

which is known. The theorem is proved.

As a consequence of the correspondence between kernels of operators and nullspaces
of their matrices, ranges and column spaces (see the reasoning above), and the theo-
rem (1), we obtain:

Theorem 0.3. Similar matrices have the same nullity and rank.
Lec 37: Eigenvalues and eigenvectors of linear operators.

Let L: V — V be a linear operator. A real number A is called an eigenvalue of L, if
L(v) = Av for some nonzero vector v. Then v is called an eigenvector associated with
A. [Note that all eigenvectors must be nonzero.] The set of all eigenvectors associated
with an eigenvalue A, plus the zero vector, is called the eigenspace associated with
A, and is denoted by V(A). One can show (do it!) that V(\) is a subspace of V.
In particular one can find a basis in V(A) and dim V' (\). Eigenspaces corresponding
to different eigenvalues intersect only by 0. This is because Av = pv implies A = p
for a nonzero v. Moreover, one can show that eigenvectors associated with different
eigenvalues are linearly independent (try to do this).

The scaling operator L: V — V| L(v) = 2v, has the only eigenvalue, which is 2.
Indeed, V' (2) = V. For more elaborated examples we need to develop some machinery.
First, consider the case of matrix operators L: R" — R" L(x) = Ax for an n X n
matrix A. We define the eigenvalues and eigenvectors of the matrixz A to be those of
the operator L.

So, A is an eigenvalue of A if

Ax = A\x



for some nonzero n-vector x. We can rewrite this as
(A—M,)x=0.
This is equivalent to singularity of A — AL, i. e.
det(A — AI,,) = 0.

If we regard \ as variable, the left-hand side of the equation above is a polynomial
p(A) of degree n. This is called the characteristic polynomial of A. We proved

Theorem 0.4. The eigenvalues of a matrixz A are exactly the roots of its characteristic
polynomial p(X). The eigenspace R™ () is the nullspace of the matriz A — \,,.

Example 3. If A is a diagonal matrix with the diagonal entries dy,ds, ..., d,, then
p(A) = (dy — A\)(dy — A)---(d, — A\). Hence the eigenvalues of A are exactly the
diagonal entries of A. The eigenspace R"(d;) is spanned by the i*" standard vector
€;.

Example 4. Let
01
A= {1 0}.

A=Ay = {‘A 1]

Then
1 =X
and p(\) = det(A — A) = A2 —1 = (XA —1)(A +1). Then the eigenvalues of A are 1
and —1. Find a basis in R?(1). According to the theorem above, it must be a basis
of the nullspace of
-1 1
e[

Verify that the vector x = [1] represents a basis of the nullspace. Similarly, check
that R?(—1) is spanned by [ 2 ].

Example 5. Let
0 -1
A= L y } .
We have p(A\) = A2 + 1. Since p does not have real roots, there are no eigenvalues
(and eigenvectors) of A.
Example 6. Let
11
A= {0 1}.

We have p(\) = (1 — \)?2. Then the only eigenvalue is 1. Verify that R?(1) is one-
dimensional with a basis [}].



Most examples are 2 X 2 matrices since otherwise p(A) has degree 3 or more, and
the roots of such a polynomial may not be easy to find. In some some special cases
it is not hard though. Try to find eigenvalues and bases in eigenspaces for the matrix

0
0
1

S NN O
o O O

Example 7. Let
0 0 0
A=10 1 0
1 01

We have p(\) = —A(1 — \)?, and the eigenvalues are 0 and 1. Check that R3(0) =
| 07 [0
Span{[_ol}} and R3(1) = Span{[(l)] : [(1)}}

Now, let’s see what happens for L: V' — V. We can choose a basis S in V' and
consider the matrix A associated with L and S. Then the eigenvalues of L coincide
with those of A. Indeed, by the diagram

V—Ltsvy o,

5| ) 2

RTL > Rm

if L(v) = Av, then for x = Ig(v) = [v]s one has: A(x) = Alg(v) = IsL(v) =
Is(Av) = Mg(v) = Ax. So, if A is an eigenvalue of L, then it is an eigenvalue of A.
And the converse is true (why?). The correspondence v < x above is actually an
isomorphism between the eigenspaces V(\) and R"(\) of L and A respectively.

Example 8. Let L: Pol(2) — Pol(2) be given by L(at?+ bt +c) = ct*+ (b+2c)t +c.
Find the eigenvalues of L and the corresponding eigenspaces. In the basis S =
{t? t,1} the associated matrix is

0 01
A=10 1 2
0 01
We have p(A\) = —A(1 — A\)2. Then the eigenvalues of A are 0 and 1. Solving

the corresponding homogeneous systems, we get R*(0) = Span{ [é]} and R3(0) =

Span{ [g] }. Applying the isomorphism Ig', we obtain that V(0) is spanned by t?
and V(1) — by t, where V' = Pol(2).

It follows from Theorem 1 and the discussion above that

Theorem 0.5. Similar matrices have the same eigenvalues.



Another way to prove this is to show that the characteristic polynomials p(\)
and ¢(\) of similar matrices A and B coincide. In fact, if A = PBP™!  then
p(\) = det(A—\I,,) = det(PBP~' — \I,,) = det(PBP~! — P(\I,)P™!) = det(P(B —
A, P71 = det(P) det(B — \I,) det(P)~! = det(B — \I,) = q(\).

Lec 38: Diagonalizable operators.

An important class of linear operators is that of diagonalizable ones (in fact, they
are a majority of all operators). A linear operator L: V' — V is called diagonalizable, if
it’s matrix in some basis is a diagonal one. A square matrix A is called diagonalizable,
if it is similar to a diagonal matrix.

Theorem 0.6. Let L: V — V be a linear operator and A its associated matriz with
respect to a basis S of V. The following statements are equivalent:

(1) L is diagonalizable;
(2) A is diagonalizable;
(8) there is a basis of V' consisting of eigenvectors for A;
(4) there is a basis of V' consisting of eigenvectors for L.

Proof. 1f L is diagonalizable, there is a basis E of V for which the associated matrix
D is diagonal. Then if P = Pgg is the transition matrix from E to S, we have by
formula (3): D = P7'AP (or A = PDP~!). Hence A and D are similar, which
means that A is diagonalizable.

Now let A be diagonalizable. Then for some P one has P~'AP = D — a diagonal
matrix. By example 3, the standard basis {ej,...,e,} of R consists of eigenvectors
for D. Then {Pe,..., Pe,} is a basis (since P is invertible). Moreover, its vectors
are eigenvectors for A. Indeed, if De; = \g;, then A(Pe;) = (AP)e; = (PD)e; =

The rest implications (3) = (4) and (4) = (1) are left as exercises. O

Using statement (3) of the theorem, one can show that in examples 3,4 and 7
the matrices are diagonalizable. Say, in example 4, A is similar to the diagonal
matrix D = [§ % ]}: A= P7'DP, where the transition matrix P has corresponding
eigenvectors as columns: P = [1 % ]}. One could also take P = [% 2%]}. In examples
5,6,8 the matrices (and linear operators) are not diagonalizable (why?).



