Transformation of a matrix to a row echelon form

Example. Using elementary row transformations, produce a row echelon form A^{\prime} of the matrix

$$
A=\left[\begin{array}{rrrr}
0 & 2 & 8 & -7 \\
2 & -2 & 4 & 0 \\
-3 & 4 & -2 & -5
\end{array}\right] .
$$

We know that the first nonzero column of A^{\prime} must be of view $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. We can't achieve this from matrix A unless interchange the first row with a row having a nonzero number in the first place. So let's transpose first and second rows:

$$
B=A_{r_{1} \hookleftarrow r_{2}}=\left[\begin{array}{rrrr}
2 & -2 & 4 & 0 \\
0 & 2 & 8 & -7 \\
-3 & 4 & -2 & -5
\end{array}\right] .
$$

Multiply the first row by $\frac{1}{2}$ so that the first entry becomes 1 :

$$
C=B_{2 r_{1} \rightarrow r_{2}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 2 & 8 & -7 \\
-3 & 4 & -2 & -5
\end{array}\right] .
$$

Now add 3 times row 1 of C to its third row to get a matrix with the first column of desired form:

$$
D=C_{3 r_{1}+r_{3} \rightarrow r_{3}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 2 & 8 & -7 \\
0 & 1 & 4 & -5
\end{array}\right]
$$

Now we can forget about the first row and concentrate on submatrix of D consisting of the other rows. Again, we need to transform this submatrix to that with the first nonzero column $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. To this end, we procede in a similar way. Now we don't need to interchange second and third rows: just multiply the second one by $\frac{1}{2}$ and then subtract it from row 3, and get the desired view of the second column. But in order to avoid fractions, let's swap rows 2 and 3 and then replace row 3 by its sum with a multiple of row 2 .

$$
E=D_{r_{2} \leftrightarrow r_{3}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & 4 & -5 \\
0 & 2 & 8 & -7
\end{array}\right]
$$

and

$$
F=E_{-2 r_{2}+r_{3} \rightarrow r_{3}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & 4 & -5 \\
0 & 0 & 0 & 3
\end{array}\right] .
$$

It is left to multiply the last row by $\frac{1}{3}$:

$$
G=F_{3 r_{3} \rightarrow r_{3}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & 4 & -5 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Thus we obtained a matrix $A^{\prime}=G$ in a row echelon form.
This example suggests a general way to produce a row echelon form of an arbitrary matrix $A=\left[a_{i j}\right]$. We find the first nonzero column (pivot column of A) and the first nonzero entry in it (it is called pivot; in the previous example, pivot of A is $a_{21}=2$). Let the pivot be $a_{i j}$ for some i, j. Interchange rows 1 and i getting matrix $B=\left[b_{i j}\right]$ with the pivot $b_{1 j}$. Multiply the first row of B by $\frac{1}{b_{1 j}}$ and obtain a matrix C with the pivot $c_{1 j}=1$. Then add multiples of row 1 of C to the rest of rows, getting matrix D with the pivot column of view $\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$. Now focus on the submatrix of D consisting of all rows except the first. Proceding in the same way with this submatrix we will finally arrive at a matrix A^{\prime} having row echelon form.

In general, matrix A^{\prime} is not uniquely determined by A. In the previous example, if we add a multiple of the last row of $A^{\prime}=G$ to its second row, we get another echelon form of A. If we add 5 times row 3 of G to row 2 , we will have

$$
H=G_{r_{2}+5 r_{3} \rightarrow r_{2}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Now let's add the second row to the first one:

$$
I=H_{r_{1}+r_{2} \rightarrow r_{1}}=\left[\begin{array}{cccc}
1 & 0 & 6 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

We have matrix I in a reduced echelon form, i. e. an echelon form plus the condition that all entries above leading ones are 0 . Like above, any matrix can be transformed to that in a reduced echelon form. Unlike echelon form, reduced echelon form is unique for any matrix. In other words, if matrices A^{\prime} and $A^{\prime \prime}$ are obtained from A by a sequences of elementary row transformations, and both $A^{\prime}, A^{\prime \prime}$ are in a reduced echelon form, then $A^{\prime}=A^{\prime \prime}$. This is a theorem which needs a proof, but we won't give it now.

