Lec 9: Solving Linear Systems

Solving linear system $A \bar{x}=\bar{b}$ can be carried out in two steps:

- Producing a row echelon form $\left[A^{\prime} \mid \bar{b}^{\prime}\right]$ of the augmented matrix $[A \mid \bar{b}]$.
- Solving the linear system $A^{\prime} \bar{x}=\bar{b}^{\prime}$ by back substitution.

This method is called Gaussian elimination. If in the first step one gets the reduced row echelon form of $[A \mid \bar{b}]$, one uses Gauss-Jordan reduction method.
Example. Solve the linear system

$$
\begin{align*}
x-y+2 z= & 0 \\
3 x-z= & 1 \tag{1}\\
-2 x+4 y+z= & -2
\end{align*}
$$

We will use the Gaussian elimination. That is, we will transform the augmented matrix

$$
B=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
3 & 0 & -1 & 1 \\
-2 & 4 & 1 & -2
\end{array}\right] .
$$

to a row echelon form. We have:
$C=B_{r_{2}-3 r_{1} \rightarrow r_{2}}=\left[\begin{array}{rrrr}1 & -1 & 2 & 0 \\ 0 & 3 & -7 & 1 \\ -2 & 4 & 1 & -2\end{array}\right], \quad D=C_{r_{3}+2 r_{1} \rightarrow r_{3}}=\left[\begin{array}{rrrr}1 & -1 & 2 & 0 \\ 0 & 3 & -7 & 1 \\ 0 & 2 & 5 & -2\end{array}\right]$,

$$
\begin{gathered}
E=D_{3 r_{2} \rightarrow r_{2}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & -\frac{7}{3} & \frac{1}{3} \\
0 & 2 & 5 & -2
\end{array}\right], \quad F=E_{r_{3}-2 r_{1} \rightarrow r_{3}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & -\frac{7}{3} & \frac{1}{3} \\
0 & 0 & \frac{29}{3} & -\frac{8}{3}
\end{array}\right], \\
G=F_{\frac{29}{3} r_{3} \rightarrow r_{3}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & -\frac{7}{3} & \frac{1}{3} \\
0 & 0 & 1 & -\frac{8}{29}
\end{array}\right] .
\end{gathered}
$$

Matrix G has a row echelon form. Now we have to solve the linear system with the augmented matrix G :

$$
\begin{align*}
x-y+2 z & = & 0 \\
y-\frac{7}{3} z & = & \frac{1}{3} \tag{2}\\
z & = & -\frac{8}{29}
\end{align*}
$$

The bottom equation tells us what z is. The second one yields $y=\frac{7}{3} z+\frac{1}{3}=\frac{7}{3}\left(-\frac{8}{29}\right)+$ $\frac{1}{3}=-\frac{9}{29}$. Finally, from the top equation we have $x=y-2 z=-\frac{9}{29}-2\left(-\frac{8}{29}\right)=\frac{7}{29}$.

Thus, system (1) has a unique solution $x=\frac{7}{29}, y=-\frac{9}{29}, z=-\frac{8}{29}$.

One may wonder why the solutions of systems (1) and (2) are the same. Note that matrix G is produced from matrix B by a sequence of elementary row transformations. These transformations correspond to: (i) interchanging equations; (ii) multiplication of an equation by a nonzero scalar; (iii) adding a multiple of an equation to another one. Each of these operations transforms a linear system to an equivalent one (i.e. with the same solutions). Hence so does a sequence of such operations. This explains why the system (1) with matrix B has the same solutions as the system (2) with matrix G.

In our example we could have proceeded transforming G to a reduced echelon form. [That is solving system (1) by the method of Gauss-Jordan reduction.] We have:

$$
\begin{gathered}
H=G_{r_{2}+\frac{7}{3} r_{3} \rightarrow r_{2}}=\left[\begin{array}{rrrr}
1 & -1 & 2 & 0 \\
0 & 1 & 0 & -\frac{9}{29} \\
0 & 0 & 1 & -\frac{8}{29}
\end{array}\right], \quad I=G_{r_{1}-2 r_{3} \rightarrow r_{1}}=\left[\begin{array}{rrrr}
1 & -1 & 0 & \frac{16}{29} \\
0 & 1 & 0 & -\frac{9}{29} \\
0 & 0 & 1 & -\frac{8}{29}
\end{array}\right], \\
J=I_{r_{1}+r_{2} \rightarrow r_{1}}=\left[\begin{array}{rrrr}
1 & 0 & 0 & \frac{7}{29} \\
0 & 1 & 0 & -\frac{9}{29} \\
0 & 0 & 1 & -\frac{8}{29}
\end{array}\right] .
\end{gathered}
$$

Matrix J is in a reduced row echelon form, and the corresponding linear system is:

$$
\begin{align*}
& x=\frac{7}{29} \\
& y=-\frac{9}{29} \tag{3}\\
& z=-\frac{8}{29}
\end{align*}
$$

This system is trivial, and we don't need to perform any other operations. In fact, this is a general observation. In Gauss-Jordan method we don't need to solve a system by the back substitution because we were solving it implicitly when getting matrices from an echelon form to a reduced echelon form. For example, a linear system with an augmented matrix

$$
\left[\begin{array}{lllll}
1 & 0 & 3 & 0 & 5 \tag{4}\\
0 & 1 & 4 & 0 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

[which is in a reduced row echelon form] has the solution $x_{1}=5-3 x_{3}, x_{2}=1-4 x_{3}$, $x_{4}=2$. [If the variables are $x_{1}, x_{2}, x_{3}, x_{4}$.] Here x_{3} can be any number, so the system has infinitely many solutions. If the bottom row of matrix (4) was [00002], then the system would be inconsistent (i.e. no solutions). Generally, given a system with an augmented matrix $B=[A \mid \bar{b}]$ in a reduced row echelon form, to get solution, we have to express variables corresponding to leading ones of B through other variables and entries of vector \bar{b}.

