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THE SEMISIMPLE SUBALGEBRAS
OF EXCEPTIONAL LIE ALGEBRAS

A. N. MINCHENKO

Abstract. Dynkin classified the maximal semisimple subalgebras of exceptional Lie
algebras up to conjugacy, but only classified the simple subalgebras up to the coarser
relation of linear conjugacy. In the present paper the simple subalgebras of excep-
tional Lie algebras are classified up to conjugacy, and their normalizers in the group
are found. In a certain sense, this completes the description of the semisimple sub-
algebras of semisimple Lie algebras. As a by-product we obtain a list of all those
semisimple subalgebras of exceptional Lie algebras for which the linear conjugacy
class does not coincide with their conjugacy class (in the classical case the corre-
sponding result was known).

0. Introduction

In what follows as a rule we shall assume that all the Lie algebras under consideration
are complex semisimple. However, in certain cases it is more convenient to assume only
reductivity, in which case this will be specifically stipulated.

Let g be a semisimple Lie algebra. Two reductive subalgebras h1, h2 of g are said to
be linearly conjugate (h1

L∼ h2) if for any finite-dimensional linear representation of the
algebra g these subalgebras become conjugate subalgebras of the matrix algebra. Clearly,
conjugate subalgebras are linearly conjugate. The converse is false: several examples were
given in [5]. Dynkin’s idea was to divide the classification of subalgebras into two stages,
the first of which is the classification up to linear conjugacy and the second is the analysis
of the partitions of the linear conjugacy classes into conjugacy classes. This approach
to the description of subalgebras is motivated by the fact that in order to determine
whether two subalgebras are linearly conjugate it is sufficient to consider merely one or
two irreducible representations of the algebra g (see Theorem 2). Furthermore, linearly
conjugate subalgebras are, as a rule, conjugate. This fact was pointed out in [5].

The following two results of Dynkin are most important for us. One of them is the
enumeration of all the regular subalgebras ([5, Table 11]) and S-subalgebras ([5, Table 39])
of exceptional Lie algebras up to conjugacy, and the second is the enumeration of all the
simple subalgebras of exceptional Lie algebras up to linear conjugacy ([5, Table 25]).

In the next section we give the basic definitions and assertions, which we will use exten-
sively in what follows. In Section 2 we obtain a classification of the simple subalgebras of
exceptional Lie algebras up to conjugacy and find their realizable outer automorphisms.
An automorphism σ of a subalgebra h ⊂ g is said to be realizable in g if there exists an
inner automorphism θ of the algebra g such that θ(h) = h and θ|h = σ. In Sections 3
and 4 we describe the semisimple subalgebras of exceptional Lie algebras whose linear
conjugacy class is non-trivially partitioned into conjugacy classes, and indicate exactly
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how this partition takes place. In Section 5, using the results of [1], we find the normal-
izers of all the connected simple subgroups of rank greater than one in exceptional Lie
groups (the centralizers of the sl2-subalgebras were found in the aforementioned paper).
All the main results are presented in the tables at the end of the paper. These tables are
described in the course of the exposition.

We point out that in this paper we correct several inaccuracies that are present in [5].
These will be indicated in the course of the exposition.

After this study was completed, the author discovered [9], in which some of the results
of the present paper were obtained; namely, the classification up to conjugacy of the
simple subalgebras of exceptional Lie algebras (over algebraically closed fields with minor
restrictions on the characteristic), and their centralizers were also found. The results of
the present paper agree with those of [9].

The author is grateful to E. B. Vinberg for his interest in this work and his valu-
able comments on the preliminary version of this paper. The author is also grateful to
I. V. Losev for useful discussions of certain questions.

List of notation

g = Lie G is the Lie algebra of a Lie group G; in what follows, unless otherwise stated,
we assume G to be the adjoint group;

Ĝ is the simply connected covering of a connected Lie group G;
G◦ is the connected component of the identity of a group G;
Tn, Tn are an n-dimensional algebraic torus and its tangent algebra (which we also

call a torus if this causes no ambiguity);
Aut g is the group of all automorphisms of an algebra g;
Int g is the group of inner automorphisms of an algebra g;
z(g) is the center of an algebra g;
zg(h) is the centralizer of a subalgebra h in g;
ng(h) = h + zg(h) is the normalizer of a subalgebra h in g;
ZG(h) is the centralizer of a subalgebra h ⊂ g in the group G;
zg(H) is the subalgebra of the algebra g consisting of the fixed vectors under the

adjoint action of a subgroup H ⊂ G;
gσ is the subalgebra of the algebra g centralized by an automorphism σ ∈ Aut g;
NG(h) is the normalizer of a subalgebra h ⊂ g in the group G;
Π(g) = {α1, . . . ,αn} is a system of simple roots of a simple Lie algebra g of rank n;

the numbering of simple roots is the same as in [3];
π1, . . . ,πn are the fundamental weights corresponding to α1, . . . ,αn;
R(λ) is the representation of the Lie algebra g with highest weight λ;
P ! Q is a semidirect product of groups P and Q, where Q is a normal factor;
Zn is a cyclic group of order n;
Sn is the group of all permutations on n elements;
An is the group of even permutations on n elements;
V4 is a group isomorphic to Z2 × Z2 or, as a subgroup of S4, the Klein four-group;
Id is the identity transformation.

1. Preliminaries

1.1. Equivalence and linear equivalence. Embeddings ϕi : h ↪→ g, i = 1, 2, are said
to be equivalent (ϕ1 ∼ ϕ2) if there exists an element θ ∈ Int g such that ϕ2 = θ ◦ ϕ1. It
is easy to obtain a classification of subalgebras from a classification of embeddings: one
must join those equivalence classes of embeddings h ↪→ g that are taken to one another
by an outer automorphism of the algebra h (and consider their images in g). Conversely,



SEMISIMPLE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS 227

having a description of subalgebras and knowing which of the outer automorphisms are
realized in g one can obtain a classification of embeddings.

By analogy with the notion of linear conjugacy of subalgebras we have the notion
of linear equivalence of embeddings. Namely, embeddings ϕi : h ↪→ g, i = 1, 2, are
linearly equivalent (ϕ1

L∼ ϕ2) if for any representation ρ : g → gl(V ) the corresponding
representations ρ ◦ ϕi, i = 1, 2, of the algebra h are isomorphic. Obviously, equivalence
implies linear equivalence. The connection between equivalence and linear equivalence is
described by the following theorem (see [5, Theorem 1.1]).

Theorem 1. Two embeddings ϕi : h ↪→ g, i = 1, 2, are linearly equivalent if and only if
their restrictions to a Cartan subalgebra of the algebra h are equivalent.

Corollary 1. Two isomorphic subalgebras h1, h2 of an algebra g are linearly conjugate
if and only if some of their dual systems of simple roots are conjugate in g (duality is
interpreted in the sense of the Cartan–Killing form).

Proof. In one direction the assertion obviously follows from Theorem 1. We now prove
that the linear conjugacy implies the conjugacy of two systems of dual simple roots. In
view of Theorem 1, for that it is sufficient to prove that there exists a representation ψ
of the algebra g such that the linear equivalence of an arbitrary pair of embeddings
ϕi : h ↪→ g, i = 1, 2, is determined by the equivalence of the representations ψ ◦ ϕ1

and ψ ◦ ϕ2 of the algebra h.
Let ψ1, . . . ,ψn be representations of the algebra g whose highest weights generate the

space t∗, where t is a Cartan subalgebra of g. It is known [5, Theorem 1.2] that then
the linear equivalence of a pair of embeddings follows immediately from their equivalence
with respect to the representations ψ1, . . . ,ψn.

Let ϕ : h ↪→ g be an arbitrary embedding, M the set of all irreducible representations
of the algebra h, and z = (k1, . . . , kn) ∈ Nn an n-tuple of positive integers. We consider
the composite of maps

M α−→ Zn βz−→ Z,

where α(x) = (m1(x), m2(x), . . . , mn(x)) is the n-tuple of multiplicities of a representa-
tion x in ψi ◦ϕ and βz(w) = (z, w) is the ordinary scalar product. The set Imα is in any
case contained in some bounded parallelepiped (independent of ϕ) and is consequently
finite. Therefore there exists a point z ∈ Nn such that the map βz is one-to-one on Imα.
We claim that then the corresponding representation ψ =

∑n
i=1 kiψi is the required one.

Indeed, βz(α(x)) is the multiplicity of an irreducible representation x in ψ ◦ ϕ. By the
choice of z, this multiplicity uniquely determines α(x), as required. "

Remark 1. In [5] this corollary (Theorem 1.5) is stated without proof and we deemed it
appropriate to fill this gap. We also point out that the existence of the representation ψ
in the proof of the corollary was proved in [8], albeit by a somewhat different method.

In particular, the linear conjugacy classes of subalgebras h ⊂ g are obtained by joining
the linear equivalence classes of embeddings h ↪→ g that are taken to each other by
outer automorphisms of the algebra h. Conversely, a classification of embeddings can
be obviously obtained from a classification of subalgebras if it is known which outer
automorphisms of dual systems of simple roots of the algebras h are realized in g (or,
which is the same, in the Weyl group of the algebra g).

In the present paper we actually solve the problem of classifification of embeddings
into exceptional Lie algebras up to equivalence. As we have already mentioned, this is
a more general problem than its analogue for subalgebras. By Theorem 7, which we
prove in Section 4, the classification of embeddings up to equivalence reduces to their
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classification up to linear equivalence. The latter is substantially simplified by using the
following assertion.1

Theorem 2. Let g be a simple Lie algebra, and ϕi : h ↪→ g, i = 1, 2, two embeddings.

1) If g (= so2n, then ϕ1
L∼ ϕ2 ⇐⇒ π1 ◦ ϕ1 ∼ π1 ◦ ϕ2;

2) if g = so2n, then ϕ1
L∼ ϕ2 ⇐⇒ πk ◦ ϕ1 ∼ πk ◦ ϕ2, k = 1, . . . , n,

where πi is the fundamental representation corresponding to the i-th simple root.

Remark 2. In a weaker version, this theorem was stated in [5, Theorem 1.3]. Dynkin
proved that to verify the linear equivalence it is sufficient to consider those sets of rep-
resentations of the algebra g for which the set of weights belonging to the levels of
width 1 generates the space t∗. Therefore a single representation was not enough for
the cases g = E7, E8: in addition it was necessary to look at the representations π6,
π7, respectively.2 Dynkin’s result was strengthened in [8], using fundamentally different
considerations.

We now discuss in detail the problem of the classification of embeddings ϕ : h ↪→ g
up to linear equivalence. This problem appears to be fairly manageable. Indeed, if g is a
classical Lie algebra, then the answer is given by Theorem 2. Next, in [5] a classification
of the maximal subalgebras of exceptional Lie algebras g up to conjugacy was obtained
and the restrictions to them of the simplest (πg) and adjoint (adg) representations of the
algebra g were found (see [5, Tables 25, 35], [10]); we point out that the restrictions of
the representations adg to the maximal regular subalgebras can easily be obtained by
the method expounded in [2]). Let ϕ(h) ⊂ m ⊂ g, where m is a maximal subalgebra of g.
By what we have said above, we can reduce the question to the case where m is a sum
of classical algebras.

Recall the simplest representations of exceptional Lie algebras:

G2 ⊂ so7, F4 ⊂ so26, E6 ⊂ sl27, E7 ⊂ sp56, E8 ⊂ so248.

Note that πE8 ∼ adE8 . It is known that we have the chain of inclusions

(1) G2 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

and all such chains are conjugate in E8. In addition, the following hold:

πF4 |G2 ∼ 3πG2 + 5N,(2)
πE6 |F4 ∼ πF4 + N,(3)
πE7 |E6 ∼ πE6 + π∗

E6
+ 2N,(4)

πE8 |E7 ∼ adE7 +πE7 + 3N,(5)

where N is the trivial representation and R∗ is the conjugate representation of R.
Thus, verifying the linear equivalence of embeddings into the exceptional Lie algebras

reduces to calculating the restrictions to them of representations of the classical Lie
algebras (although in many cases even this is not needed by virtue of the tables in [5, 10]).
We do not carry out a more detailed investigation, since this is not required for the main
thrust of this paper.

We now present known facts, which reduce the classification of embeddings up to equiv-
alence to the classification up to linear equivalence, in certain cases. As above, let
ϕi : h ↪→ g, i = 1, 2.

1In what follows we assume that n ≥ 4 for the algebra so2n.
2The remark after Theorem 11.2 in [5] relates to simple subalgebras.
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Theorem 3. We have ϕ1 ∼ ϕ2 ⇐⇒ ϕ1
L∼ ϕ2 under any of the following conditions:

1. h + sl2;
2. Imϕi, i = 1, 2, are regular subalgebras;
3. g = sln, spn, so2n+1, G2, F4.

We comment on the assertions of the theorem. Assertion 1 can be formulated as
follows: two sl2-subalgebras are conjugate if and only if their Dynkin characteristics are
conjugate. Apparently, this assertion was first proved by Mal’tsev (see [7]). We shall
discuss assertion 2 in the next subsection. When g = sln, assertion 3 is the definition of
an isomorphism of representations. The proof for the algebras g = spn, so2n+1 was given
in [7] (in the last case the proof follows from a fact whose proof goes back to Frobenius:
Equivalent completely reducible orthogonal representations are orthogonally equivalent).
The case g = G2 is obvious in view of parts 1 and 2. The case g = F4 was analyzed
in [8].

Theorem 4. Suppose that g = so2n in the preceding notation.
1. If the embeddings ϕ1, ϕ2 are linearly equivalent but not equivalent, then ϕ2 =

σ ◦ϕ1, where σ is an outer automorphism of the algebra g defined by an element
of the orthogonal group O2n.

2. The embeddings ϕ, σ ◦ ϕ are linearly equivalent if and only if the representa-
tion π1 ◦ ϕ of the algebra h contains the zero weight.

3. The embeddings ϕ, σ ◦ ϕ are equivalent if and only if the representation π1 ◦ ϕ
has an odd-dimensional orthogonal subrepresentation.

Parts 1 and 3 of the theorem were proved in [7], and part 2 in [5, Theorem 1.4].

Example 1. The adjoint representations of the algebras sl3 and so5 determine their
embeddings into the algebras so8 and so10, respectively. Applying Theorem 4 one can
easily see that the linear equivalence classes of these embeddings consist of two classes of
equivalent embeddings and that these are the only embeddings into these algebras with
this property. We point out that for embeddings h ↪→ so2n, where h is a direct sum of
algebras isomorphic to sl2, the notions of equivalence and linear equivalence coincide,
since an irreducible even-dimensional representation of such an algebra h cannot have
zero weight.

Thus, it remains to examine the cases g = E6, E7, and E8. The corresponding
result is contained in Theorem 7. Namely, we enumerate all the cases where a class of
linearly equivalent embeddings into g is non-trivially partitioned into classes of equivalent
embeddings, and it is also indicated exactly how this partition takes place. There are 3
such cases for the algebra E6, 2 for E7, and 10 for E8, and in each case the partition
is into exactly two equivalence classes. A similar assertion (Corollary 3) is proved for
subalgebras. We point out that the methods of dealing with simple and non-simple
semisimple embeddings are essentially different. In the first case we rely on Dynkin’s
classification of the simple embeddings, and in the second, on Theorems 3 and 4.

1.2. Description of regular subalgebras. A reductive subalgebra h ⊂ g is said to be
regular if one of the following equivalent conditions holds:

(1) the subalgebra h is normalized by some maximal torus t of the algebra g;
(2) the reductive subalgebra ng(h) ⊂ g has maximal rank.

In particular, if a subalgebra h ⊂ g is regular, then the relation ng(h) = h+ zg(h) implies
that t = t ∩ h + t ∩ zg(h). An embedding whose image is a regular subalgebra is called
a regular embedding. If in these definitions we replace Lie algebras by Lie groups, then
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we obtain the definitions of a regular subgroup and a regular embedding. Note that
subalgebras (subgroups) of maximal rank are regular.

We point out that it follows from the definition that up to equivalence, a regular
embedding is uniquely determined by its restriction to a Cartan subalgebra (assertion 2
of Theorem 3).3 Indeed, let ϕ : h ↪→ g be a regular embedding, and k ⊂ h a Cartan
subalgebra. We choose a maximal torus t ⊂ zg(k).4 Using conjugation by an element
of zg(k) we can make sure that the condition t ⊂ ng(h) holds. Then the map ϕ will take
root subspaces to root subspaces, and to a root α ∈ k∗ there will correspond a root of the
algebra g that is equal to 0 on t∩zg(ϕ(h)), and to (ϕ∗|ϕ(k))−1(α) on ϕ(k). This argument,
with the fact that maximal tori are conjugate in zg(ϕ(k)), implies that linearly equivalent
regular embeddings are equivalent.

Dynkin [5] set out a construction which lets us describe all the semisimple regular
subalgebras of a given semisimple Lie algebra g. It is clearly sufficient for us to be able
to find the maximal subalgebras among these subalgebras. Consequently, we can assume
the algebra g to be simple. We consider the subalgebras whose systems of simple roots are
obtained by deleting one element either from the extended or the ordinary system of sim-
ple roots of the algebra g. Then every maximal regular subalgebra of g is conjugate to one
of the algebras obtained in this way. This description, in particular, implies the following.

Proposition 1. Every proper regular subalgebra has non-trivial centralizer in the group
G = Int g. The centralizer of a semisimple maximal subalgebra of maximal rank has
prime order.

Corollary 2. Let R ⊂ G be a connected reductive subgroup of maximal rank of a con-
nected reductive Lie group G, and let Z = ZG(R) = Z(R) be its centralizer (which
coincides with its center). Then R = ZG(Z)◦.

Proof. We set R′ = ZG(Z)◦. Then R ⊂ R′ is a subgroup of maximal rank and Z(R) =
Z(R′). Taking the quotients of the groups R and R′ by the common center we use
the first part of Proposition 1 to obtain that the resulting quotients coincide. But then
R = R′. "

We might expect that when the rank rk g is small, semisimple regular subalgebras of
the same type will be conjugate. This is indeed the case: if g is one of the exceptional
Lie algebras, then there are only 6 exceptions for g = E7, and 5 for g = E8, and in each
such case the set of regular subalgebras of the same type contains exactly two conjugacy
classes. To be precise, one of these classes is distinguished by the fact that the system
of simple roots of some representative of it is contained in A7 (respectively, in A8) in the
case g = E7 (respectively, E8). If we denote regular subalgebras by the same symbols as
their types (that is what we shall do in what follows), then to denote this class we shall
use a prime, and for the other class, two primes. For example,

A′′
5 (⊂ A7 ⊂ E7, (2A3)′ ⊂ A8 ⊂ E8.

We mention another nice property of regular subalgebras. Recall that a Weyl in-
volution of a reductive Lie algebra is an automorphism acting as multiplication by −1
on some maximal torus of the algebra. Such automorphisms do exist, and they are all
conjugate by inner automorphisms.

Proposition 2. Let h be a regular subalgebra of a reductive Lie algebra g. Then there
exists a Weyl involution θ of the algebra g such that θ(h) = h and θ|h is a Weyl involution
of the algebra h.

3This assertion was also proved in [8].
4In what follows, for simplicity we shall often omit the symbol ϕ, for example, zg(k) = zg(ϕ(k)).
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Proof. For θ one must take an involution acting by inversion on a torus normalizing the
subalgebra h. "

Remark 3. It is known that for a simple Lie algebra g we have θ (∈ Int g only in the cases
g = sln, n ≥ 3, so4n+2, and E6.

1.3. Complete regular subalgebras. A regular subalgebra of a reductive Lie alge-
bra g is said to be complete if it is not contained as a proper subalgebra in any regular
subalgebra of the same rank. Complete semisimple subalgebras are characterized by the
fact that they are the derived subalgebras of the centralizers of tori, or by the fact that
their system of simple roots can be supplemented to a system of simple roots of the
algebra g. In what follows, the set of regular (respectively, complete regular) subalgebras
containing a given subalgebra h ⊂ g and considered up to conjugacy in g will be denoted
by R(h) (respectively, R̃(h)). Complete regular subalgebras are important for us for the
following reason.

Proposition 3. Let h be a semisimple subalgebra of a semisimple Lie algebra g.
1. There exists a unique subalgebra r̃ ∈ R̃(h) (up to conjugacy) such that

rk r̃ = min
l∈R̃(h)

rk l.

2. If embeddings ϕi : h ↪→ r̃ ⊂ g, i = 1, 2, are equivalent in g, then the element
θ ∈ Int g in the definition of equivalence can be chosen so that θ(̃r) = r̃.

Proof. We choose a maximal torus k ⊂ zg(h). Then for r̃ one must take the derived
subalgebra of the subalgebra zg(k). The assertions of the proposition follow from the
conjugacy of maximal tori in zg(k). "

1.4. R- and S-subalgebras. Let h be a reductive subalgebra of a semisimple Lie alge-
bra g and let G = Int g.

A subalgebra h is called an R-subalgebra if R(h) (= {g}. Otherwise it is called an S-
subalgebra. The algebra g is regarded as an S-subalgebra of itself. Clearly, every proper
regular subalgebra is an R-subalgebra, and the principal three-dimensional subalgebra
is an S-subalgebra. In a similar fashion we define R- and S-embeddings, as well as R-
and S-subgroups. Note that an S-subalgebra is necessarily semisimple (otherwise it would
be contained in the centralizer of a non-trivial torus). These subalgebras can be easily
characterized.

Proposition 4. A connected subgroup H ⊂ G = Int g is an S-subgroup if and only if
ZG(H) = {e}.

Proof. The implication “if” follows immediately from Proposition 1. Now let H be an
S-subgroup of G. We take an arbitrary semisimple element s ∈ ZG(H). Then ZG(s) is
a regular subgroup of G containing H. This subgroup coincides with the whole group G
only in the case s = e. "

We shall also be interested in the subalgebras that have trivial centralizers in the
group Aut g. We call them T-subalgebras. Clearly, every T-subalgebra is an S-subal-
gebra. The converse is false. For example, the subalgebra F4 of the algebra E6 is an S-
but not a T-subalgebra. The same can be said about the diagonal inclusion h ⊂ h + h.

Proposition 5. Let ϕi : h ↪→ r ⊂ g, i = 1, 2, be equivalent embeddings of semisimple Lie
algebras that are T-embeddings into r and suppose that R(h) = {r, g}. Then the element
θ ∈ Int g in the definition of equivalence normalizes r.
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Proof. We set Z = ZG(r) + Zp, where p ∈ N is prime (see Proposition 1). It is sufficient
to show that Z0 # ZG(h) = Z (we identify the subalgebra h, for example, with ϕ1(h)).
Note that the group Z0 contains no elements of order distinct from p. Suppose that
the order of the group Z0 is not prime. Then there exists an element of Z0 normalizing
(and even centralizing) the subgroup Z and not contained in it. Therefore this element
acts non-trivially on the subalgebra r and centralizes the subalgebra h. We arrive at a
contradiction with the fact that h is a T-subalgebra. "

In [5] all the S-subalgebras of exceptional Lie algebras were classified up to conjugacy
(but the non-regular R-subalgebras were not classified). The S-subalgebras of the ex-
ceptional Lie algebras are analogues of the irreducible subalgebras of the classical Lie
algebras. Indeed, in the cases g = sln, spn, so2n+1 the S-subalgebras are precisely the
irreducible subalgebras. For g = so2n the class of S-subalgebras is somewhat wider: it
includes in addition the subalgebras with respect to which the underlying vector space de-
composes into a sum of two non-equivalent simple odd-dimensional submodules that are
non-degenerate in the sense of the scalar product.5 In the last case the proof is based on
the fact that the maximal regular subalgebras in so2n are so2k+so2(n−k), k = 2, . . . , n−2,
and sln. It is interesting to note that every R-subalgebra for any faithful representation
of the algebra g is represented by a reducible system of matrices [5, Theorem 7.1].

Clearly, the projections of S-subalgebras onto ideals of the algebra g are S-subalgebras
of these ideals.

Example 2. Suppose that an algebra g is the direct sum of two isomorphic ideals:
g = h ⊕ h. Then there is a one-to-one correspondence between the elements of the
group Aut h/ Int h and the conjugacy classes of the S-subalgebras isomorphic to h. Namely,
these classes can be described by the following representatives:

hi = {x + σi(x) : x ∈ h},

where σi ∈ Aut h are representatives of the cosets of Int h in Aut h. Clearly, the outer
automorphisms of the subalgebras hi are not realized in g. Therefore, if we consider the
embeddings h ↪→ g, the number of their equivalence classes is given by the square of the
number of conjugacy classes of the subalgebras of g isomorphic to h.

This example can be obviously generalized to the case of an arbitrary number of
isomorphic ideals whose sum gives a decomposition of an algebra g.

Let h be a maximal S-subalgebra of a simple exceptional Lie algebra g. Then by
Dynkin’s result the algebra h is isomorphic to one in the following list:

g = G2 : sl2;
g = F4 : sl2, G2 + sl2;
g = E6 : sl3, G2, sp8, G2 + sl3, F4;
g = E7 : sl2, sl2 + sl2, sl3, G2 + sl2, G2 + sp6, F4 + sl2;
g = E8 : sl2, so5, sl3 + sl2, G2 + F4,

and isomorphic subalgebras are conjugate, except for the cases sl2 ⊂ E7, E8 (where
there are, respectively, two and three such subalgebras) and A2, G2 ⊂ E6, which are not
conjugate to their images under an outer automorphism of E6 (see [5, Theorem 11.1]).

5There is an inaccuracy in [5, Theorem 7.2]: the submodules do not have to be non-isomorphic.
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1.5. One property of linearly conjugate subalgebras. Let h be a semisimple sub-
algebra of a semisimple Lie algebra g. In what follows it will be convenient to use the
notation

R(h)L =
⋃

h′ L∼h

R(h′).

We define the corank of the subalgebra h to be the number cork h = rk g− rk h. For a
non-negative integer d we denote by m(d) the minimum possible rank of a reductive Lie
algebra of dimension d. We have the following obvious proposition.

Proposition 6. Let d = dim zg(h). Then there exists a complete regular subalgebra
containing h of corank at least m(d).

By considering the adjoint representation of the algebra g, we observe that the central-
izers of linearly conjugate subalgebras must have equal dimensions. In this connection
we note the following.

Proposition 7. Let c, c′ be the maximum possible coranks of subalgebras in R(h)L,
R(h), respectively, and suppose that c ≤ 2. Then c′ = c.

Proof. Clearly, c ≥ c′. We bring the situation c = 2, c′ = 1 to a contradiction (the other
cases are obvious). If c′ = 1, then the subalgebra zg(h) is isomorphic to either sl2 or T1.
But an algebra of dimension 3 or 1 cannot have rank 2. "

2. Classification of simple embeddings

From this moment on we assume that g is a simple exceptional Lie algebra and h is
a semisimple subalgebra of g. We shall obtain a classification of the simple subalgebras
up to conjugacy and then investigate the realizability in g of their outer automorphisms.
We shall thus arrive at a classification of the simple embeddings.

2.1. Identification of simple subalgebras. In [5] the simple subalgebras of excep-
tional Lie algebras are identified by their indices. In this subsection we explain these
notions.

Let ϕ : h ⊂ g be an embedding of a simple Lie algebra. We consider invariant
scalar products ( , ) on the algebras g and h normalized so that the greatest length
of a root is equal to 2. We define a new invariant scalar product (x, y)1 = (ϕ(x),ϕ(y))
on h. Then using [5], for some integer jϕ, called the index of the embedding ϕ, we have
(x, y)1 = jϕ(x, y).

Clearly, the index of a composite of embeddings is equal to the product of their indices.
Furthermore, the index is invariant with respect to automorphisms of the algebra h.
Therefore it makes sense to speak about the indices of simple subalgebras.

Suppose that embeddings ϕi : h ↪→ g, i = 1, . . . , k, are such that their images commute.
Then jϕ1+···+ϕk = jϕ1 + · · · + jϕk .

As a rule, non-conjugate subalgebras have different indices. Therefore it is reasonable
to denote simple subalgebras by indicating their index by a superscript, for example,
A28

1 ⊂ G2. If the indices are the same but the subalgebras are not linearly conjugate,
then in addition we use primes: A6′

2 , A6′′

2 ⊂ E8.

2.2. Dynkin’s result. In this subsection we expound Dynkin’s classification of the sim-
ple subalgebras of exceptional Lie algebras up to linear conjugacy. By Theorem 3 we
are only interested in the non-regular subalgebras of rank greater than 1 of the alge-
bras g = E6, E7, E8. Note that we do not have to classify the S-subalgebras, since this
has been done by Dynkin; we only need to find all their realizable automorphisms.
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In [5, Table 25] for each simple subalgebra h ⊂ g, up to linear conjugacy, the restric-
tions π1|h and ad |h of the simplest and adjoint representations of the algebra g to h were
indicated. (It is interesting to note that the representation ad |h uniquely determines
the linear conjugacy class of the subalgebra h.) Furthermore, the set R(h)LS, known as
the set of minimal ambient regular subalgebras, was indicated. This set consists of those
regular subalgebras containing subalgebras h′ L∼ h in which h′ is an S-subalgebra.6 We
point out that the classification of the simple embeddings up to linear equivalence can
easily be obtained from Dynkin’s classification (Theorem 2).

In Dynkin’s classification there is one inaccuracy, which is important for us: there does
not exist a subalgebra so7 ⊂ E8 with unique minimal ambient regular subalgebra 2D4.
One can understand this by writing down the restrictions of the adjoint representation
of the algebra E8 to all possible subalgebras so7 ⊂ 2D4: it turns out that each of them
is linearly conjugate to one of the subalgebras so7 ⊂ A6, A′

7 or so7 ⊂ A′′
7 . Furthermore,

the subalgebras sl3 and sl5 of the algebra E8 with unique minimal ambient regular
subalgebras E6 + A2 and 2A4, respectively, are missing in [5, Table 25] (the fact that all
the S-subalgebras sl3 ⊂ E6 + A2 and sl5 ⊂ 2A4 are linearly conjugate can be verified
directly by using Theorem 2).

Dynkin’s result (more precisely, that part of it which we shall need) is presented in the
first three columns of Tables 6, 7, 8.

2.3. Description of Tables 6–8. The tables contain the classification up to equivalence
of the simple non-regular embeddings of rank greater than 1. We will obtain these results
in this section. The first three columns of the tables contain the analogous classification
up to linear equivalence (Dynkin’s result).

In the first column we indicate, up to linear conjugacy, the subalgebras h ⊂ g whose
minimal ambient regular subalgebras are listed in the second column of the tables. We
set V to be the simplest module of the algebra g. We denote by Γ(h)L the group of outer
automorphisms of the subalgebra R(π1)(h) that are realizable in gl(V ); in other words,
the symmetry group of the diagram of the representation R(π1)|h. The group Γ(h)L

enables one to obtain a classification of the simple embeddings up to linear equivalence.
These groups, for the algebras h that have outer automorphisms, are indicated in the
third column of the tables.

The fourth column gives n(h), the number of conjugacy classes into which the linear
conjugacy class of the subalgebra h is partitioned. If the algebra h has outer automor-
phisms, then the fifth column shows Γ(h), the group of the outer automorphisms of the
subalgebra h that are realizable in g, that is, the image of the natural homomorphism

NG(h) → Aut h → Aut h / Int h.

Obviously, Γ(h) ⊂ Γ(h)L. In the cases where n(h) > 1, the groups Γ(h) for representatives
of different conjugacy classes are listed separated by commas. The specifics of partitions
of the corresponding linear equivalence classes is described by Theorem 7.

2.4. Some remarks. In the rest of this section we will substantiate the results presented
in the fourth and fifth columns of these tables. Our work is based on the information
in the first three columns of Tables 6–8 and certain additional considerations. Table 5
(see [10]) is a great help in this; in it we interpret the symbol ⊗ as the tensor product
of representations of simple ideals of the subalgebra r ⊂ g. For example, it follows
from this table that all outer automorphisms of the subalgebra D4 are realized in F4

6The term “minimal ambient regular subalgebra” should not be understood literally: for example, in
the case g = F4 it could be the subalgebra r = A1 + A1: the diagonally embedded sl2-subalgebra h ⊂ r
is regular in g (its simple root corresponds to a short root of the algebra g), but is an S-subalgebra in r.
However, in the cases g = An, Dn, E6, E7, E8 there can be no such “surprises” [5, Theorem 2.4].
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(and therefore also in E6, E7, E8). Consequently, all the S-subalgebras so7 ⊂ D4 are
conjugate in F4 (and in E6, E7, E8). Indeed, up to conjugacy there are three such S-sub-
algebras defined by the following representations of the algebra so7: R(π1) + N, R(π3),
and R(π3)— the last representation defines an embedding that differs from the second
by an outer automorphism of the algebra so8 (Theorem 4). These subalgebras are taken
to one another by outer automorphisms of the algebra so8. This can easily be verified
directly, but one can use the results of [6]: there does not exist an outer automorphism
of order three of the algebra so8 that centralizes a subalgebra isomorphic to so7.

2.5. The case g = E6. In this subsection we work with Table 6. First we prove that
the contents of the fourth column are valid.

Classification of subalgebras. The subalgebras numbered 1–4 are S-subalgebras and
their classification is known. We only observe that in cases 1 and 2 the subalgebras h are
not conjugate to their images under an outer automorphism of the algebra g (see [5]). For
the subalgebras numbered 5–13 the results are obvious (they follow from the notion of S-
subalgebra). Case 14 has already been examined. We consider separately the subalgebras
numbered 15, 16, 17.

Case 15. In the algebra so10 up to conjugacy there are two S-subalgebras so5 embedded
via the adjoint representation (see Example 1). We denote them by h1 and h2. It follows
from Table 6 that they are linearly conjugate in g. If they were conjugate in g, then by
Proposition 3 they would be conjugate by an element normalizing D5. But it is clear from
Table 5 that no outer automorphism of the subalgebra D5 is realized in g. Consequently,
the subalgebras h1 and h2 are not conjugate.

Cases 16, 17. We set r = 3A2 and analyze the S-subalgebras h ⊂ r isomorphic to sl3.
We enumerate them up to conjugacy in r:

h1 = {x + x + x : x ∈ sl3},
h2 = {x + σ(x) + x : x ∈ sl3},
h3 = {x + x + σ(x) : x ∈ sl3},
h4 = {σ(x) + x + x : x ∈ sl3},

where σ is an outer automorphism of the algebra sl3. It is clear from Table 5 that the
transpositions of the first two (respectively, last two) simple ideals of the subalgebra r
simultaneously with an outer automorphism of the third (respectively, the first) ideal are
realized in g. Consequently, the subalgebras h1, h3, and h4 are conjugate in g. Therefore
there are at most two conjugacy classes corresponding to the subalgebras listed above.
On the other hand, according to Dynkin’s result there are exactly two of them, since there
exist two linear conjugacy classes of the subalgebras under consideration. For definiteness
we note that case 16 corresponds to the subalgebra h2, and case 17 to the subalgebra h1.
It remains to prove that the S-subalgebras sl3 ⊂ D4 and h2 ⊂ r are conjugate. But
this follows from Proposition 7 and the fact that both S-subalgebras sl3 ⊂ D4 (they are
embedded via the adjoint representation) are conjugate in g. We note also here that the
outer automorphisms of the algebras h1, h2 are realized by elements of NG(r).

We now pass to the classification of embeddings, that is, to verifying the last column
of Table 6.

Classification of embeddings. In all cases apart from the subalgebras with number 1,
it is easy to verify that Γ(h)L = Γ(h) and all automorphisms are realized by elements
of NG(r) for some minimal ambient regular subalgebra r ⊃ h. We now examine case 1. It
is clearly sufficient to find the group Γ(h) only for a representative of one of the conjugacy
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classes (recall that the latter are taken to one another by an outer automorphism of the
algebra g).

We set {ei, hi, fi}, i = 1, . . . , 6, to be the standard generators of the three-dimensional
subalgebras corresponding to the simple roots of the algebra g and set eijk = [[ei, ej ], ek],
i, j, k = 1, . . . , 6. Then the following vectors are the root vectors corresponding to the
simple roots x and y of the S-subalgebra h = sl3 ⊂ g:7

ex =
√

2 (e1 + e2 + e4 + e5) + e6,

fx =
√

2 (f1 + f2 + f4 + f5) + f6,

ey = (−1 + i)e123 +
√

2 (e634 − e236) + (1 + i)e345 + ie234,

fy = (−1 − i)f123 +
√

2 (f634 − f236) + (1 − i)f345 − if234.

We consider the involution θ of the algebra g defined by the longest element of its Weyl
group: θ(ei) = −f6−i, i = 1, . . . , 5, and θ(e6) = −f6. Then it is easy to see that
θ(h) = h, θ(ex) = −fx and θ(ey) = fy. Therefore the automorphism θ induces an outer
automorphism of the subalgebra h and Γ(h) = Z2.

This completes the analysis of the case g = E6.

2.6. The case g = E7.

Classification of subalgebras. Subalgebra number 1 in Table 7 is an S-subalgebra,
and there is nothing to prove here. Subalgebras numbered 2–18 are linearly conjugate to
subalgebras of E6. Cases 2–12 have already been examined in the preceding subsection.
Since an outer automorphism of the subalgebra E6 is realized in g (Proposition 2),
we conclude that in cases 13–15 the linear conjugacy classes are not partitioned. In
cases 16, 17 (as well as in cases 24, 25) the fourth column is substantiated by using
Proposition 7. The linearly conjugate subalgebras numbered 18 are conjugate. This
follows from Proposition 6: it is sufficient to prove that dim zg(h) > 3. But this is
obvious, since zg(A4) ⊃ A2. Cases 19–23 obviously follow from the classification of the
S-subalgebras of classical Lie algebras.

Cases 26, 27. In the algebra sl6 + sl3, there are two (up to conjugacy) S-subalgebras
isomorphic to sl3 (the latter embeds into sl6 via the symmetric square of its tautological
representation). It is clear from Table 7 that these subalgebras are not linearly conjugate.
Therefore we only need to prove that there exist two regular subalgebras

r1 = A7, r2 = A5 + A2 ⊂ g

that intersect in a subalgebra which is isomorphic to sl3 and is an S-subalgebra in each
of them. In any case, they intersect in the principal three-dimensional subalgebra s ⊂ sl3
(Theorem 3). We know from [1] that ZG(s) + SO3. We observe that ZG(r1) + Z2

and ZG(r2) + Z3 (see [6]). It is known that any two isomorphic finite subgroups of SO3

are conjugate. Therefore we are not interested in the nature of the embedding of any
particular subgroup into SO3.

We set Z = A4 ⊂ SO3 and claim that zg(Z) + sl3. Since the subalgebra so8 ⊂ sl8 is
the centralizer of some involution of the algebra sl8, we conclude that ZG(so8) = V4 ⊂ Z
(this will be proved more formally in Example 11). We have the factorization

A4 = Z3 ! V4.

7There is a misprint in [5, Table 24]: the coefficient of f234 in the formula for fy is equal to −i,
not to i. This follows from the preceding relations given there, or can be verified by a straightforward
calculation using the formulae given here.
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Therefore on the subalgebra so8 ⊂ g there arises a (non-trivial) grading such that the
elements of the zero component form the subalgebra so0

8 = zg(Z). This grading cannot
be an inner one, since one can verify that s ⊂ so8 is an S-subalgebra. Therefore, by [6],
the algebra so0

8 is isomorphic to either sl3 or G2. The last case is impossible: G2 (⊂
zg(Z3) = r2. Therefore zg(Z) = sl3 is an S-subalgebra in so8 and, consequently, also
in r1. Thus, the analysis of this case is complete.

Classification of embeddings. All the cases, except for 1 and 22, can be trivially
examined by using Proposition 2. We now find the groups Γ(h) for the subalgebras with
the aforementioned numbers.

Case 1. This case is examined similarly to case 1 where g = E6. Using the same notation
we give the formulae for the root vectors of the S-subalgebra h = sl3 ⊂ g:8

ex = e2 +
√

6 (e4 + e5) + 2(e6 + e7),

fx = f2 +
√

6 (f4 + f5) + 2(f6 + f7),

ey = e4357 +
√

6 (e1 − e2347) + 2(e2345 + e3456),

fy = f4357 +
√

6 (f1 − f2347) + 2(f2345 + f3456).

It is obvious that the automorphism of the algebra g corresponding to the longest element
of its Weyl group realizes an outer automorphism of the subalgebra h.

Case 22. Let s be the principal three-dimensional subalgebra of the algebra h = so8.
Then ZG(s) + SO3, [1]. We already know that ZG(h) = V4 ⊂ SO3. Since the group SO3

has a subgroup isomorphic to S4, we obtain that there exists a subgroup S3 ⊂ SO3 acting
on the subalgebra h. It is clear that this subgroup acts by outer automorphisms. Thus
the result presented in the fifth column of Table 7 is completely substantiated.

2.7. The case g = E8. We now prove the results presented in the fourth and fifth
columns of Table 8.

Classification of subalgebras. The subalgebra with number 1 is an S-subalgebra
and is of no interest. Corresponding to the numbers 2–17 (respectively, 18–24) are
the subalgebras linearly conjugate to subalgebras in E6 (respectively, E7). We can ex-
amine cases 2–13 (respectively, 18–20) in the same fashion as the case g = E6 (respec-
tively, g = E7). Cases 14–16 have already been analyzed in the preceding subsection.

To prove that the linear conjugacy class in case 17 is not partitioned it is sufficient to
prove that an outer automorphism of the subalgebra A2 is realized in zg(A2) = E6. But
this is obvious, since it is realized even in G2 ⊂ E6.

Cases 21, 22, 36 are analyzed by using Proposition 7, and in cases 27–35 the substan-
tiation of the fourth column is based on the classification of the S-subalgebras and offers
no difficulty.

We now prove that the linearly conjugate subalgebras corresponding to number 37 (or
38) are conjugate. For that it is sufficient to prove that the outer automorphisms of
the subalgebra D4 (respectively, A3) are realized in zg(A2) = E6 (respectively, zg(A3) =
D5). But we already know that, up to conjugacy, there are two subalgebras A3 ⊂ D5

corresponding to the representations R(π1)+R(π3)+2N and R(π2)+4N ; in either case
an outer automorphism is realized.

Cases 39, 40 can easily be examined using Proposition 5.
It remains to consider the subalgebras numbered 23–26 and 41–43.

8A misprint again slipped into [5, Table 24]: the scalar product (α∨
7 , hy) is equal to −1, not to 1;

this gives rise to an error in the formulae for ey , fy .
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Cases 24–26. Using Proposition 7 and the fact that all the subalgebras so8 ⊂ sl8 are
conjugate we arrive at the conclusion that, in the cases under consideration, any of the
subalgebras h ⊂ g embeds into r = 2D4. For convenience we give the Dynkin diagram D4

(Figure 1).

!!1 !
!
!3

"
"!

4

2

Figure 1. Dynkin diagram D4

We denote the symmetries of the diagram with fixed vertices i, 2 by σi, i = 1, 3, 4, and
the cycle (134) by θ. We denote the corresponding automorphisms of the algebra by the
same letters. In the algebra r there are 6 conjugacy classes of S-subalgebras isomorphic
to so8 with representatives

h2 = {x + x : x ∈ so8},
hi = {x + σi(x) : x ∈ so8}, i = 1, 3, 4,

h5 = {x + θ(x) : x ∈ so8},
h6 = {x + θ−1(x) : x ∈ so8}.

Using Table 5 we find that simultaneous outer automorphisms of the simple ideals
of the subalgebra r, as well as their permutation, are realized in g. Therefore the sub-
algebras hi, i = 1, 3, 4, are conjugate. The same can also be said about the subalge-
bras h5, h6. Consequently, we have at most three conjugacy classes of S-subalgebras
so8 ⊂ r. On the other hand, it is clear from Table 8 that there exist exactly three lin-
ear conjugacy classes of such subalgebras. Therefore they coincide with the conjugacy
classes. Writing down the restrictions of the adjoint representation of the algebra g to
the subalgebras hi, i = 1, . . . , 6, one can verify that the subalgebras h1, h2 are linearly
conjugate (and therefore conjugate) to subalgebras in A′

7, A′′
7 , respectively.

It is easy to see that Γ(hi)L = Γ(hi), i = 1, . . . , 6, and the corresponding outer
automorphisms are realized by elements of NG(r). It is interesting to note that this fact
implies (by Proposition 3: r̃ = E7) that all the outer automorphisms of subalgebra with
number 22 in Table 7 are realizable in g = E7.

Case 23. Using Proposition 7 we obtain that every subalgebra that is linearly conjugate
to h is conjugate to one of the S-subalgebras h1 ⊂ A′

7 or h2 ⊂ A′′
7 . We know from [5] that

the subalgebra ng(h1) + sl3 + sl2 is a (maximal) S-subalgebra in g; this cannot be said
about ng(h2) = h2+A1, which is obviously an R-subalgebra. Therefore the subalgebras h1

and h2 are not conjugate (and, moreover, their centralizers are not conjugate, although
they are isomorphic).

Note that the subalgebras h1 and h2 embed into the subalgebras with numbers 26
and 24, respectively. In particular, they are contained in 2D4.

Case 41. In the notation of the analysis of cases 26, 27 for g = E7 we have

r1 = 2A4, r2 = A3 + D5, ZG(s) + S5, ZG(r1) = Z5 ⊂ S5, ZG(r2) = Z4 ⊂ S5.

Since all the S-subalgebras so5 ⊂ r1, so5 ⊂ r2 in each case are conjugate (in the last case
this follows from Proposition 2), it is sufficient to prove that there exist subalgebras that
are conjugate to r1, r2 and contain a common S-subalgebra isomorphic to so5.
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We observe that in S5 there exists a subgroup Z4 ! Z5 (the factors are generated by
the cycles (2354) and (12345), respectively). This means that in the algebra g there
exist subalgebras conjugate to r1, r2 (which we denote by the same symbols r1, r2) that
intersect in the subalgebra r01 consisting of the elements of zero degree with respect to
some Z4-grading on r1. This grading is not an inner one, since s ⊂ r1 is an S-subalgebra.
Then it is clear that r01 is the required subalgebra so5.

Cases 42, 43. In the algebra so16 there are exactly two non-conjugate subalgebras
isomorphic to so9, which embed into it via the spinor representation and are taken to
one another by an outer automorphism of the algebra so16. It is clear from Table 8
that these subalgebras are not linearly conjugate in g = E8. Therefore it is sufficient to
consider only case 42.

In the notation of the analysis of the preceding case we have

r1 = A8, r2 = D8, ZG(s) + S3, ZG(r1) = Z3 ⊂ S3, ZG(r2) = Z2 ⊂ S3.

Since S3 = Z2 !Z3, it obviously follows that the linear conjugacy class of the subalgebra
h ⊂ g is not partitioned also in this case: r01 + so9.

Classification of embeddings. All the cases that we have not considered here can
easily be examined using Propositions 2, 5.

This completes the classification of the simple embeddings.

3. Invariants of exceptional Lie algebras

Let H ⊂ G be a reductive subgroup of a reductive Lie group, and let h ⊂ g be
the corresponding inclusion of Lie algebras. We consider the adjoint action Ad of the
group G. The corresponding algebra of invariant polynomials is denoted by C[g]G. The
algebra of restrictions of these functions to the subspace h is denoted by C[h]G. Its
spectrum h//G coincides with the closure of the set πG(h) in g//G, where πG : g → g//G
is the factorization morphism. Let ψ : h//H → h//G be the morphism corresponding to
the inclusion C[h]G ⊂ C[h]H . By [8], we know that the morphism ψ is finite.

We consider the chain of inclusions

(6) G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7.

The next theorem was proved in [8].

Theorem 5. The following conditions are equivalent:
1. For any two embeddings of the torus ϕi : t ⊂ h, i = 1, 2, such that ϕ2 = Ad g◦ϕ1,

g ∈ G, it follows that ϕ2 = Ad h ◦ ϕ1, h ∈ H.
2. For any semisimple element h ∈ H we have Gh ∩ H = Hh.
3. The map ψ is bijective.

By (2)–(5) the conditions of Theorem 5 are satisfied for the pairs H = G2, G = F4

and H = F4, G = E6. In this section we show that these conditions hold in the case
of any inclusion h ⊂ g in (6). Here the roles of the groups are played by G = Int g,
H = NG(h) + Aut h. The absence of the algebra E8 in (6) is explained by the fact that
the conditions of Theorem 5 are not satisfied for the inclusion E7 ⊂ E8: the regular
subalgebras A′

5 and A′′
5 in E7 obtained from one another by an outer automorphism

of D6 ⊂ E7 are not linearly conjugate in E7, but are linearly conjugate in E8 (since
D6 ⊂ B6 ⊂ E8).

Theorem 6. If h ⊂ g is an inclusion of (not necessarily consecutive) subalgebras in (6),
then

(7) C[h]G = C[h]H .
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We reduce the proof to the case h = E6, g = E7. First we observe that it is sufficient
to prove Theorem 6 for consecutive inclusions.

Lemma 1. Let h1 ⊂ h2 ⊂ · · · ⊂ hn be inclusions of semisimple Lie algebras. Suppose
that for any pair of consecutive inclusions hi ⊂ hi+1, i = 1, . . . , n − 2, there exist outer
automorphisms of the algebra hi+1 centralizing hi and generating the group of outer
automorphisms Aut hi+1/ Int hi+1 of the algebra hi+1. Then if C[hi]Hk = C[hi]NHk

(hi)

holds for i = k−1 = 1, . . . , n−1, where Hi = Int hi, it holds for any i < k, i, k = 1, . . . , n.

Proof. It is sufficient to prove the lemma in the case i = 1, k = n. Using induction
on k we can assume that the assertion holds for k = n − 1. We now prove it in the case
k = n ≥ 3. Indeed, we have the chain of equalities

C[h1]Hn = C[hn]Hn |h1 =
(
C[hn]Hn |hn−1

)
|h1 = C[hn−1]Hn |h1 =

(
C[hn−1]NHn (hn−1)

)
|h1

=
(
C[hn−1]Hn−1

)
|h1 = C[h1]Hn−1 = C[h1]NHn−1 (h1) ⊃ C[h1]NHn (h1).

Therefore, C[h1]Hn = C[h1]NHn (h1), as required. "

Obviously, Lemma 1 will be applicable to the chain (6) if we prove Theorem 6 for
consecutive inclusions in (6). To do this, we reproduce Table 1 listing the degrees of the
generators for the algebra C[g]G (see, for example, [3, Reference Chapter]).

Table 1. Degrees of the generators of the algebra C[g]G

g C[g]G

G2 2, 6

D4 2, 4, 4, 6

F4 2, 6, 8, 12

E6 2, 5, 6, 8, 9, 12

E7 2, 6, 8, 10, 12, 14, 18

It is known that if g is a simple Lie algebra, then the algebra C[g]Int g is generated
by the functions trπ1(xk), where x ∈ g and k runs over the set of degrees of a minimal
system of generators of the algebra (see, for example, [4]). This fact and Table 1 imply
that Theorem 6 holds for the inclusion G2 ⊂ D4 (since πD4 |G2 ∼ πG2 + N). It follows
from relation (3) that this theorem also holds in the case F4 ⊂ E6. In the case D4 ⊂ F4

one must pass to the maximal tori (Chevalley’s theorem) and observe that the Weyl
group of F4 is obtained as an extension of the Weyl group of D4 by the group S3. Thus,
it remains to prove the following.

Proposition 8. We have the equality C[E6]E7 = C[E6]Aut E6 .

In the proof we shall need the following lemma.

Lemma 2. Let A ⊂ B be an extension of commutative graded finitely generated algebras.
Suppose that in A and B one can choose homogeneous generators fi ∈ A, gi ∈ B,
i = 1, . . . , n, so that the following conditions hold :

1. deg fi = deg gi;
2. the system of generators fi ∈ A is minimal.

Then A = B.
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Proof. We need to prove that gi ∈ A for all i = 1, . . . , n. We use induction on the degree.
Let g1, . . . , gk1 be the generators of degree 1 (which may not exist). Then f1, . . . , fk1

can be expressed as linear combinations of the gi. If the corresponding matrix is sin-
gular, then we obtain a contradiction to the fact that the system of generators of the
algebra A is minimal. Therefore, g1, . . . , gk1 ∈ A. The induction step for degree d > 1
can be performed in a similar fashion taking into account the fact that the elements of
the algebra B of degrees less than d belong to the algebra A. "

Proof of Proposition 8. We take

A = C[E6]E7 , B = C[E6]Aut E6

for the algebras A and B in the hypothesis of the lemma. In each of them we can choose
generators of degrees 2, 6, 8, 10, 12, 14, 18. For the algebra A this follows from Table 1.
We now prove this for B. Let C = C[E6]Int E6 = C[χ2,χ5,χ6,χ8,χ9,χ12], where χk is
the invariant of degree k. Then the elements χ2,χ6,χ8,χ2

5,χ12,χ5χ9,χ2
9 belong to the

algebra B. They actually generate it, since a Weyl involution of the algebra E6 acts on
the elements of C of odd degree as multiplication by −1 and the algebra C is free.

To apply the lemma we only need to verify that the chosen system of generators
for A satisfies the minimality condition. Since the morphism ψ is finite, it follows that
tr.deg QuotA = 6. Therefore it is sufficient to prove that the algebra A is not freely gen-
erated. It follows from the results of [8] that the morphism ψ is birational (consequently,
it is a normalization) if the groups G and H are simple and all the outer automorphisms
of the subgroup H are realized in G. In particular, this holds in our case. If the algebra A
were freely generated, then the variety h//G would be isomorphic to a vector space and
would coincide with its normalization, which is impossible, since the algebra B is not
free (the corresponding “Weyl group” is not generated by reflections).

It remains to use the lemma to obtain the required result. "

4. Classification of semisimple embeddings

In this section we determine all the classes of linearly equivalent embeddings that
are partitioned into several classes of equivalent embeddings. It remains to consider the
embeddings of non-simple semisimple Lie algebras h into the exceptional Lie algebras
g = E6, E7, E8.

4.1. Dynkin characteristics of three-dimensional subalgebras. This subsection is
auxiliary. Here we expound some results from [5] that will be useful in this section.

The (Dynkin) characteristic of a simple three-dimensional subalgebra s = 〈e, h, f〉 ⊂ g
is the element h of a Cartan subalgebra. By Theorem 3 the subalgebra s is determined
uniquely by its characteristic, up to conjugacy. We can assume that the vector h lies
in some fixed Weyl chamber. Then this element is given by the set of non-negative
integers (labels) αi(h), where αi, i = 1, . . . , n, are the simple roots of the algebra g. One
can prove that these labels are equal to 0, 1, or 2. For example, on the characteristic of
the principal three-dimensional subalgebra all the simple roots take value 2.

Dynkin found the characteristics of all the simple three-dimensional subalgebras of
exceptional Lie algebras [5, Tables 16–20]. From this, in turn, one can easily obtain
a list of the subalgebras zg(h), where h is the characteristic of some three-dimensional
subalgebra. The system of simple roots of the derived subalgebra of such a subalgebra
consists of those roots αi that are equal to 0 on h.
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4.2. The main idea. Let h = h1 ⊕ h2 be a decomposition into a sum of non-zero ideals
and let k ⊂ h, ki ⊂ hi, i = 1, 2, be Cartan subalgebras. In what follows we assume that
we are given an embedding ϕ : h ↪→ g. We are interested in how uniquely this embedding
is determined by the embedding ϕ|k, namely, whether in the linear equivalence class of ϕ
there is a non-equivalent embedding. We call an embedding ϕ whose linear equivalence
class is partitioned, and the corresponding subalgebra ϕ(h) ⊂ g, interesting; otherwise
they are uninteresting.

We regard the algebra h as a subalgebra of g bearing in mind the embedding ϕ. We
set ai = zg(hi), zi = zg(ki), i = 1, 2. It is clear that ai ⊂ zi and the derived subalgebra
of zi is a complete regular subalgebra of g.

Suppose that the algebra z1 contains no simple ideals of types Dn (n ≥ 4), E6 or E7.
Then by Theorem 3 the embedding ϕ|h2 : h2 ↪→ z1 is determined uniquely, up to conju-
gation in z1, by the embedding ϕ|k2 . Furthermore, if the subalgebra a2 ⊂ g contains no
simple ideals of the types listed above, then the embedding ϕ|h1 : h1 ↪→ a2 is also de-
termined uniquely by the embedding ϕ|k1 . Thus, we see that under our assumptions the
linear equivalence class of the embedding ϕ coincides with the equivalence class. We now
prove that if the last assumption does not hold, then the subalgebra a2 must be regular.
Indeed, it is sufficient to consider only the case so8 ⊂ E8: in the other cases this follows
from the classification of the simple subalgebras. But it follows from the same classifica-
tion (see [5]) that only in the case of the non-regular subalgebra so8 ⊂ E7 ⊂ E8 do we
have dim zg(so8) ≥ 3 (number 24 in Table 8). Here zg(so8) = A1, but zg(A1) = E7 (= so8.

Proposition 9. Let ϕ be an interesting embedding. Then in the algebra h there exists a
proper ideal h1 ⊂ h such that either the subalgebra a1 ⊂ g or z1 ⊂ g contains exactly one
of the subalgebras D4, D5, D6, E6, E7 as a simple ideal.

Proof. The only thing that remains to be proved, in the light of our discussion, is why the
subalgebra D7 ⊂ g = E8 is missing from the list indicated in the statement. Clearly, it is
not contained in the centralizer of any semisimple subalgebra of g. Moreover, zg(D7) +
T1. Therefore it is sufficient to consider the case where zg(D7) is a Cartan subalgebra
of some simple three-dimensional subalgebra s ⊂ g. We obtain from the classification of
characteristics that there exist two subalgebras s1, s2 with this property. We state an
auxiliary result whose proof follows immediately from the definitions.

Lemma 3. For a given uninteresting subalgebra h ⊂ g to be an ideal of some interesting
subalgebra of g it is necessary and sufficient that there exist two embeddings into zg(h)
that are linearly equivalent in zg(k) (where k ⊂ h is a Cartan subalgebra) and are not
taken to one another by any element of the group ZG(h).

Using [1],
ZG(s1) = Spin13, ZG(s2) = Z2 ! (G2 ×G2).

In this case the subalgebras si, i = 1, 2, cannot be ideals of interesting subalgebras. In-
deed, linearly equivalent embeddings into so14 contained in so13 are also linearly equiv-
alent in so13, which explains the first case. In the second case there are few candi-
dates for interesting embeddings, since the maximal semisimple subalgebras in G2 are A2

and A1 + A1. An easy inspection of all possibilities proves the proposition. "

Using Theorem 4 one can easily find all the pairs of linearly equivalent embeddings
into so8, so10 and so12 that are not equivalent. In the first two cases these are listed
in Example 1. In the last case there are exactly two pairs of such embeddings. The
first pair is defined by the embedding ad⊗N ⊗ N + N ⊗ T ⊗ T of the algebra a =
sl3 + sl2 + sl2, where N and T are the trivial and tautological representations of the



SEMISIMPLE SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRAS 243

algebra sl2, respectively. The second pair is defined by the restriction of this embedding
to the subalgebra formed by the first two ideals of the algebra a.

We consider separately two cases: case D (case E) where either z1 or a2 contains as a
simple ideal one of the subalgebras D4, D5, D6 (respectively, E6, E7) of the algebra g.
We call the corresponding subalgebras h ⊂ g subalgebras of type D or E.

4.3. Case D. From the description of the linearly equivalent but not equivalent em-
beddings into so8, so10 and so12 given above, we see that among the simple ideals of
the algebra h there is one of type A2 or B2. In the first case its image under the em-
bedding ϕ is contained in D4 or in D4 + A2, and in the second case, in D5. Since the
S-subalgebra sl3 ⊂ D4 + A2 (for g = E8) has a two-dimensional torus as its centralizer
in g, the case of embedding into D4 + A2 is impossible (recall that we are considering
only non-simple subalgebras h ⊂ g).

Thus, we can assume that h1 = sl3 ⊂ D4 or h1 = so5 ⊂ D5 (in both cases the
embedding is defined by the adjoint representation). We need to find all those pairs of
linearly equivalent embeddings into z1 that are not taken to one another by an element
of the group ZG(h1) (see Lemma 3). Clearly, we can immediately discard the variants of
those exceptional algebras g for which the rank of the semisimple part of the subalgebra
a1 ⊂ g is at most 1.

The case h1 = sl3. Using Dynkin’s classification of the simple subalgebras we can find
the dimensions of the subalgebras a1 and z1 for each exceptional algebra g, after which
it is easy to guess these subalgebras. We give the corresponding Table 2.9

Table 2. h1 = sl3

g E6 E7 E8

a1 T2 3A1 D4

z1 A5 + T2 E6 + T2

It is clear from this table that the case g = E6 is impossible. Let g = E7. In the next
section we will show that ZG(h1) = Z3 ! (SL2 × SL2 ×SL2). It is easy to see that we
have interesting embeddings of the algebras h = h1 +h2 only for h2 = 2A1 and h2 = 3A1,
and there is a partition into exactly two equivalence classes in each case (they differ by
a transposition of the simple ideals of the subalgebra h2).

We finally consider the case g = E8. In the next section we will prove that ZG(h1) =
Z3 ! Spin8. It then follows from Theorem 6 and Lemma 3 that every interesting
subalgebra of the form h = h1 + h2 must satisfy the following condition: the embed-
ding ϕ2 : h2 ↪→ D4(∼ zg(D4)) is such that σ ◦ϕ2 (∼ τ ◦ϕ2, where σ is an outer involution
of the algebra D4, and τ ∈ Z3 ! Int D4. We call such subalgebras h2 ⊂ D4 even. They
are characterized by the fact that no outer automorphism of the algebra D4 takes these
subalgebras to subalgebras acting on a non-degenerate odd-dimensional subspace. In-
deed, if the algebra h2 normalizes such a subspace, then σ ◦ ϕ2 ∼ ϕ2. Conversely, if
there exists an outer automorphism (whose Kac diagram has index 2) of the algebra D4

centralizing h2, then h2 is contained in one of the subalgebras so7, so3 + so5 (see, for
example, [6]). Hence the role of h2 can be played only by four subalgebras: D4, 4A1, 3A1,
and sl3 (the last one is embedded into D4 via its adjoint representation). Obviously, each
of the corresponding linear equivalence classes contains exactly two equivalence classes.
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Table 3. h1 = so5

g E6 E7 E8

a1 T1 A1 + T1 A3

z1 D4 + T4

The case h1 = so5. In this subsection we use Table 3.
It is clear that only the case g = E8 is of interest. Note that ZG(h1) = SL4. Since in

the algebra D4 a Weyl involution is an inner automorphism, we obtain that the subalge-
bras h = h1 + h2, h2 = A3, or h2 = A2, and only these, are interesting and contain h1 as
a simple ideal. Here the corresponding linear equivalence classes are partitioned into two
classes of equivalent embeddings that differ by an outer automorphism of the algebra h.

The classification obtained above implies immediately that there are no non-simple
interesting embeddings into E6. Consequently, any two linearly equivalent non-equivalent
embeddings into E6 are taken to one another by an outer automorphism of the algebra E6.

4.4. Case E. Since ZE7(E6) = T1, it is sufficient to examine the cases where the subalge-
bra h1 is a simple three-dimensional subalgebra, such that it has a torus with centralizer
of type E6. From the classification of characteristics we find that there is exactly one
candidate for h1, and by [1], ZE7(h1) = F4. Thus, in the case g = E7 there are no
interesting subalgebras of type E (Theorems 6, 3).

We have obtained a classification of the interesting embeddings into E7. In contrast
to the case g = E6, there are no simple interesting embeddings here, but there are two
semisimple ones.

We now consider the algebra g = E8. All the simple three-dimensional subalge-
bras si ⊂ g whose characteristics hi have centralizers with one of the types E6, E6 + A1

or E7 (modulo the centers) are listed in Table 4 (note that the group Spin5 indicated in
the table is contained in the regular subgroup SL4 ⊂ G).

Table 4. The centralizers of three-dimensional subalgebras and their characteristics

i 1 2 3 4 5

zg(hi) E7 + T1 E7 + T1 E6 + A1 + T1 E6 + A1 + T1 E6 + T2

ZG(si) Ê7 Z2 ! Ê6 F4 × SL2 Spin5 ×SL2 F4

From Theorem 6 and the classification of the interesting embeddings into E6, E7 that
is already available, we obtain only one series of interesting subalgebras h = h1 +h2 in g,
where h1 + sl2: h1 = A1 (i = 1) and h2 is an interesting subalgebra in E7.

It remains to consider the case rkh1 = 2, zg(k1) = E6 + T2. We can assume the
algebra h1 is simple, that is, of one of the types A2, B2, G2. Clearly, the principal
three-dimensional subalgebra s ⊂ h1 must be represented in Table 4. The indices of the
subalgebras si ⊂ g, i = 1, . . . , 5, are equal to 1, 3, 4, 12, 28, respectively (see [5]), while
the indices of the principal three-dimensional subalgebras s can be equal to 4k, 10k, 28k,
k ∈ N in the cases h1 + sl3, so5, G2, respectively. Therefore we only need to consider
the cases where h1 is the subalgebra sl3 ⊂ g of index 1 or 3 (index 7 is impossible by [5]),
or h1 = G2 ⊂ F4 ⊂ g. In the last case we have zg(k1) = zg(A2) = E6; this case is of no
interest by Theorem 6 (since zg(G2) = F4). Now suppose that h1 + sl3 is a subalgebra of

9We leave those squares that yield us no useful information blank.
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index 3. Then zg(k1) = E6 only if h1 ⊂ D4 is an S-subalgebra, which fact follows from [5,
Table 25]. We have already considered this case above. Finally, let h1 = A2. Then
zg(h1) = zg(k1) = E6. Consequently, in this case we obtain one more series of interesting
subalgebras h = h1 + h2: h1 = A2 and h2 ⊂ E6 is an interesting subalgebra in E6.

This completes the classification of the interesting subalgebras of exceptional Lie al-
gebras.

4.5. The main result. We summarize all of our preceding discussion.

Theorem 7. Let g be an exceptional Lie algebra, and h a semisimple Lie algebra. Then
the linear equivalence class of an arbitrary embedding ϕ : h ↪→ g consists, as a rule, of a
single class of equivalent embeddings. All the exceptions are listed in Table 9.

Let us explain the notation in Table 9: ϕL = {ϕ1, . . . ,ϕk} denotes a set of repre-
sentatives of the classes of equivalent embeddings for a given linear equivalence class
of the embedding ϕ = ϕ1. When describing the embedding ϕ1 we indicate a regular
subalgebra r with respect to which ϕ1 is an S-embedding. The only exceptions are the
cases h = h0 + sl3 ⊂ E8, where h0 is either an interesting subalgebra of E6 or an even
subalgebra of D4. An arbitrary outer automorphism of order 2 of the algebra r is denoted
by σ, and of the algebra h by τ . The other notation is self-evident.

Corollary 3. Let h be a semisimple subalgebra of a simple exceptional Lie algebra g.
Then the linear conjugacy class of the subalgebra h coincides with its conjugacy class in
the case g = E7. In the other cases there are exceptions, which are listed below :

(1) g = E6: h1 = sl3, G2, so5 are S-subalgebras in E6, E6, D5, respectively, and
h2 = σ(h1);

(2) g = E8: h1 = sl3 is an S-subalgebra in E6 + A2 and h2 = (σ × Id)(h1).
Here hi, i = 1, 2, denote representatives of the conjugacy classes of one linear conjugacy
class and σ is an outer involution of the corresponding simple Lie algebra.

Remark 4. Dynkin [5] found three (of the four) cases of partitions of linear conjugacy
classes. Namely, two of them are S-subalgebras in E6, and the third case is the S-sub-
algebra sl3 ⊂ D4 + D4 ⊂ E8. However, in the last case the number of conjugacy classes
in the partition was not indicated. According to Corollary 3, there are exactly two such
classes in each of these cases.

5. Normalizers of simple subalgebras

In this section we find the normalizers of the simple subalgebras h of rank greater
than 1 in the adjoint exceptional Lie groups G; more precisely, the groups Γ! ZG(h),
where the groups Γ + Γ(h) ⊂ Aut h / Int h were calculated above. From the results of §2,
it follows that in all cases the group of realizable outer automorphisms of the algebra h
embeds into NG(h), that is, NG(h) = Γ ! (H · ZG(h)). First we find the groups ZG(h);
this occupies the larger part of this section. Then we determine the action of the group Γ
on the group ZG(h). Thus we shall find the groups Γ! ZG(h).

The centralizers of the simple three-dimensional subalgebras were calculated by Alek-
seevskĭı [1]. The method proposed in that paper is also suitable in our case. We present
this method in a form convenient for our purposes.

5.1. Alekseevskĭı’s results. Let G be the adjoint semisimple Lie group, and h a
semisimple subalgebra of a Lie algebra g, and let R(h)S = {r1, . . . , rk} be the set of
regular subalgebras, considered up to conjugacy in g, in which h is an S-subalgebra.

Suppose that every subalgebra ri ∈ R(h), i = 1, . . . , k, satisfies condition C: If two
embeddings h ↪→ ri are equivalent in g, then they are taken to one another by an element
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of NG(ri). This condition is satisfied in the case where the algebra h is isomorphic to sl2.
This can be seen from Dynkin’s classification of the sl2-subalgebras [5, Theorems 9.2, 9.3]:
three-dimensional S-subalgebras of the same index in a simple Lie algebra are conjugate.
If the algebra h is simple and g is an exceptional Lie algebra, then condition C is also sat-
isfied, except for two cases. This follows from the classification of the simple embeddings
(for the cases G2 and F4 see the first two columns of Tables 10 and 11). The exceptional
cases are g = E7 or E8, h = so8 ⊂ A7 ⊂ E7.

Let Ri be a connected regular subgroup of G with tangent algebra ri, and let Ri

be a subgroup of maximal rank with semisimple part Ri. We consider the set D(h) =
{D1, . . . , Dk}, where Di = Z(Ri). It follows from condition C that the conjugacy classes
of the subalgebras ri ⊂ g containing h are in a one-to-one correspondence with the conju-
gacy classes of the subgroups Di ⊂ Z = ZG(h). The subgroups in D(h) are characterized
by the fact that these are the maximal quasitori10 in Z, up to conjugacy in Z, that are
regular in G (that is, contained in some maximal torus of the group G). Note that a
subgroup of a simply connected group that is isomorphic to Zn × Zm is regular. This
follows from the fact that every semisimple element of a simply connected group has a
connected centralizer (see, for example, [3]).

A complete set of invariants of the reductive group Z is as follows:
(1) the Lie algebra z of the group Z;
(2) the fundamental group F of the semisimple part Zs of the group Z◦;
(3) the group P = Zs ∩ C◦, where C is the center of the group Z;
(4) the group of components K = Z/Z◦;
(5) the extension class ω of the group Z◦ by K.

In most cases the group F can be found by using the following assertion.

Proposition 10. Suppose that none of the groups Di/D◦
i contains a subgroup of the

form Zp×Zp, where p is a prime divisor of the order of the center of the group Ẑs. If the
group G is simply connected, then the group Zs is also simply connected. In any case,
Zs + Ẑs/S, where the group S is isomorphic to a subgroup of the center of the simply
connected covering Ĝ of the group G.

In the case where the group G is simply connected, the group Zs is simply connected
for most of the subalgebras h; this can be proved by applying Proposition 10. In the re-
maining cases the group F can also be found merely from the description of the group Di.
For a non-simply connected group G the method of embedding into a smaller subgroup
is used. This method consists in passing from the group G to the subgroup ZG(Y ),
where Y is some subgroup of the center of the group Z◦. Clearly, zg(Y ) ⊃ h. The same
method is used for finding the group P : in this case we set Y = C◦. We will illustrate
this in subsequent examples. It is also useful to bear in mind that the derived subgroups
of complete regular subgroups of simply connected groups are simply connected (see, for
example, [3]).

Let τ : K → AutZ◦/ IntZ◦ be the canonical homomorphism, and K0 its kernel. The
following propositions easily follow from the characterization of the subgroups Di ⊂ Z.

Proposition 11. The group K0 is trivial if and only if among the groups Di ∈ D(h)
there exists a connected group of maximal dimension.

Proposition 12. If all the groups Di have the same dimension, then K = K0.

10A quasitorus is a commutative algebraic group consisting of semisimple elements. Such group are
also called diagonalizable.
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Proposition 13. Let π : Z → K be the natural projection. If Di/D◦
i is a non-trivial

cyclic group, then π(Di) (= 1. Furthermore, every element of the group K is conjugate
in K to an element of one of the subgroups π(Di).

The extension class ω is determined by an element of the group H2(K, C). In the
cases K (= 1, C (= 1 the groups K are fairly small (Z2, Z3, V4, and S3); therefore the
cohomology groups easily can be calculated. They are as a rule trivial. In the other cases
one can use the method of embedding into a smaller subgroup. As a result we obtain
that ω = 1 in all cases.

5.2. Finding the groups N = Γ ! Z. We make several remarks, which simplify the
calculations. Some examples of their application will be considered at the end of the
section.

As a rule, if the group Γ is non-trivial, then it is isomorphic to Z2 (the only possible
exception is if the algebra h is of type D4). Therefore we actually need to find the action
on Z of only one element.

In many cases an outer automorphism σ of the subalgebra h is realized by some Weyl
involution θ of the algebra g normalizing some regular subalgebra r1 ∈ R(h)S. Then θ
acts by inversion on the corresponding group D1 ⊂ Z. If the automorphism σ is actually
realized in r1, then the corresponding element of the group Γ commutes with D1. By
using these considerations it is often possible to determine the group N.

We observe that if ZG(h) = ZL(h) · ZG(L) is an almost direct product, where H ⊂
L ⊂ G, and the outer automorphisms of the subalgebra h are realized in l, then Γ! Z =
(Γ! ZL(h)) · ZG(L).

A great deal (if not all) of information about the group N can be extracted from the
group Z0 = ZG(hΓ). This follows from the fact that N ⊂ Z0.

If there is only one regular subalgebra of minimal rank r ∈ R(h)S and it is complete,
which practically always holds, then an element σ ∈ Γ acts as an inner automorphism
on the group Z◦ if and only if the automorphism of the subalgebra h corresponding to
σ is realized in r. This follows from the fact that the centralizer of a maximal torus of
the group Z◦ is a connected regular subgroup with tangent algebra r (if the assumptions
about the subalgebra r are not satisfied, then it should be replaced by r̃ from Proposi-
tion 3).

Note that for some subalgebras h (namely, for h = A1
2 ⊂ E6, h = D2

4 ⊂ E8) the
group N was actually found in § 2.

5.3. Description of Tables 10–14. In these tables, h ⊂ g is a simple subalgebra of an
exceptional Lie algebra g. Recall that in the cases g = G2, F4, E8 the group G = Int g
is simply connected, and in the cases g = E6, E7 its fundamental group is isomorphic
to Z3, Z2, respectively.

The notation for the subalgebras h is taken from [5] (that is, we indicate the type
and index, possibly with primes). We use this notation because it agrees with the nota-
tion in [1]. We denote this way subalgebras considered up to linear conjugacy. According
to our classification of subalgebras up to conjugacy, for the subalgebras whose linear con-
jugacy classes are partitioned we indicate the corresponding number in parentheses.

In the second and third column we present the sets R(h)S and D(h). We know the
first from the classification of the simple subalgebras obtained above, while the centers
of the subalgebras of maximal rank can be found, for example, in [1]. In the fourth
column we indicate the algebras zg(h), which can be easily determined since we know
their dimensions, which were found in [5].

The fifth and sixth columns contain the main result of this section, namely, in these
columns we indicate the groups Z = ZG(h) and N = Γ! Z.
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First we will explain our notation. By (G1×G2× · · ·×Gn)/S we mean the quotient of
the direct product of the groups G1, . . . , Gn by a subgroup isomorphic to S and diagonally
embedded into the direct product of the centers of these groups. In all the cases that we
encounter such a subgroup is determined uniquely up to an automorphism of the group
G1 × G2 × · · · × Gn. The direct product of n copies of the group G is denoted by Gn.
By G · T we mean an almost direct product of a semisimple group G and a torus T in
which G∩T = Z(G), except for the case considered in Example 8 (below). The notation
G1 ! G2 always means a semidirect product such that none of the non-trivial elements
of the group G1 centralizes the group G2. Bearing in mind this stipulation, the group
G1!G2 is, as a rule, uniquely determined up to isomorphism. We now list the exceptions:

(1) h = A1
2, g = E6, N = Z2 ! ((SL3 × SL3)/Z3), and the group Γ = Z2 acts by

interchanging the direct factors;
(2) h = A1

3, g = E6, N = Z2 ! ((SL2 × SL2) · T1), and the group Γ = Z2 acts by
interchanging the factors SL2;

(3) h = A1
4, g = E7, N = Z2!(SL3 ·T1), and the non-trivial element of the group Γ =

Z2 acts as a Weyl involution on Z.

5.4. Examples of finding the group Z = ZG(h).

Example 3. We consider the subalgebra h = A3′

2 of the algebra g = F4. In this case,
D1 + V4, D2 + Z3 (recall that the maximal diagonalizable subgroups Di ∈ D(h) are the
characteristics of minimal regular subalgebras containing h; they are known for all regular
subalgebras). Consequently, the group Z is finite and contains, apart from the identity
element, only elements of order 2 and 3 (since every finite cyclic subgroup is regular).
Therefore Z = S2 · S3, where Sp is a Sylow p-subgroup, and S2 + Zk

2 , k ≥ 2. Since the
group G is simply connected, we have S3 + Z3; otherwise the group Z would contain a
regular subgroup of the form Z3 × Z3, which is false. Then from the fact that all the
subgroups of Z isomorphic to V4 are conjugate we see that there are no more of them in S2

than the order of the subgroup S3, that is, 3. Therefore, k = 2. Next, the number of Sylow
2-subgroups in Z is equal to either 1 or 3. We claim that the second case is impossible.
Assume the opposite and consider the natural homomorphism of permuting the Sylow 2-
subgroups ϕ : Z → S3. This homomorphism is obviously surjective (otherwise its kernel
would be a Sylow 2-subgroup, which cannot be contained in the normalizer of another
Sylow 2-subgroup). Therefore, Kerϕ + Z2. Hence we obtain the existence of an element
of order six in the group Z, which is impossible. Thus, Z + Z3 ! V4 + A4.

Example 4. Let g = F4 and h = G1
2. We have D1 + T1, D2 + V4, z ∼ A8

1. We now
find the group K. By Proposition 11 this group acts by outer automorphisms on Z◦.
But Aut sl2 = Int sl2; therefore the group K is trivial. Consequently, the group Z is
connected. Since the group SL2 has no subgroups isomorphic to V4, we obtain that Z +
SO3.

Example 5. We consider the case g = E6, h = A1
2 = A2, D1 + T4, z ∼ 2A1

2 (where ∼
denotes conjugacy in g). It follows from Proposition 13 that the group Z is connected.
Therefore we only need to find the group F . According to Proposition 10 it is either
trivial or isomorphic to Z3. We prove by contradiction that the first case is impossible.
Note that the simple ideals of the subalgebra z are conjugate to h. Therefore a connected
regular subgroup of G with Lie algebra 3A2 is simply connected, which contradicts the
well-known fact that its center is isomorphic to Z3. Therefore Z + (SL3 × SL3)/Z3,
where the subgroup Z3 ⊂ Z(SL3) × Z(SL3) is embedded diagonally.

Example 6. Consider the case g = E6, h = G1
2, D1 + T2, z ∼ A2′′

2 . Clearly, the
group Z is connected. We find its fundamental group F . If this group were trivial,
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then the subalgebra G1
2 +A2′′

2 would be an R-subalgebra (since it would have non-trivial
centralizer in G). But it follows from Dynkin’s classification that this is an S-subalgebra.
Therefore, Z + PSL3.

Example 7. Consider the case g = E6, h = B1
2 , D1 + T3, z ∼ B1

2 + T1. By Proposi-
tions 11 and 12 the group Z is connected and by Proposition 10 the group F is trivial
(since the group Z2 + Z(Sp4) does not embed into the group Z3 + Z(Ê6)). We now
find the group P . We apply the method of embedding into a smaller subgroup. Obvi-
ously, the connected center C◦ of the group Z is a one-dimensional torus. Furthermore,
ZG(D1

5) is also a one-dimensional torus; moreover, it is conjugate in g to the torus C◦,
since 2B1

2 ⊂ D1
5. Therefore for the subgroup Spin10 ⊂ G corresponding to the subalgebra

D1
5 ⊃ h we have C ∩ Spin10 = Z(Spin10). Then P = Z(Spin10) ∩ Spin5 + Z2. The last

isomorphism follows, for example, from the fact that the image of the group Spin5 under
the canonical homomorphism π : Spin10 → SO10 is isomorphic to SO5. Thus, we obtain
Z + Sp4 ·T1 + (Sp4 ×T1)/Z2.

Example 8. Let g = E6, h = A1
3. Then D1 + T3, z ∼ 2A1

1 + T1. It is clear that in this
case the group Z is connected and the group F is trivial. It remains only to find the
group P . We apply the method of embedding into a smaller subgroup. As in the preced-
ing example, the question reduces to the situation C◦ = ZG(D1

5) + T1: this can be done,
since r = A3 +2A1 ⊂ D5. In a similar fashion we obtain P = Z(Spin10)∩Spin4 (the sub-
group of Spin10 corresponding to the subalgebra sl2+sl2 + so4 is simply connected). If π
is the covering in the preceding example, then π(R) + SO6 × SO4 = π(Spin6)×π(Spin4).
Hence it easily follows that Spin6 ∩ Spin4 = Kerπ + Z2. Moreover, since Z(SO4) (=
Z(SO10), we obtain that Kerπ = P . Thus, Z = (SL2 × SL2) ·T1 + (SL2 × SL2 ×T1)/Z2,
where the group Z2 is generated by an element of order two with non-trivial projections
onto the factors.

Example 9. Let us find the centralizer in G = E7 of the subalgebra h = A3′

2 ⊂ g. We
have D1 + T3, D2 + Z3×T1, z ∼ 3A1

1. According to Propositions 11, 13 we have K0 = 1,
K + Z3. It is also clear that the group K acts on the algebra z by a cyclic permutation of
order three of its simple ideals. Let us find the group F . It is either trivial or isomorphic
to Z2 (see Proposition 10). But it cannot be trivial because ZG(D4 +3A1) + V4; see [1].
Therefore Z = Z3!((SL2 × SL2 × SL2)/Z2), where Z2 is the diagonally embedded central
subgroup.

Example 10. Consider the case g = E8, h = B2′

3 , D1 + T2, D2 + Z2 × T1, D3 + V4,
z ∼ A1

1 + T1. By Proposition 10 we have F = 1, and by Proposition 11, K0 = 1.
Furthermore, the group K contains an involution. Then it is clear that K + Z2 and the
group K acts as an involution on a maximal torus of the group Z◦ (this follows from
the fact that the group Z◦ has no other outer automorphisms). To find the group P we
observe that Ê7 ∩ ZG(E7) + Z2 (since ZG(E7) + SL2). The torus C◦ + T1 contains
the center of the group E7, since this torus is the centralizer in Ê7 of a complete regular
subalgebra A6 ⊂ E7. Therefore P + Z2 and Z + Z2 ! (SL2 ·T1) + Z2 ! (SL2 ×T1)/Z2.

Example 11. Consider the case where condition C is not satisfied and we cannot use
the results of the preceding subsections: g = E7, h = D2

4, r1 = A7, D1 + Z2, z = 0.
The group Z has at most three classes of conjugate subgroups isomorphic to Z2 (because
there are exactly three non-equivalent embeddings so8 ↪→ sl8). Since all the non-identity
elements of the group Z are involutions, we conclude that Z = Z2 or Z = V4. But the
first case is impossible, since an outer automorphism of the subalgebra r1 centralizing h
is realized in g, and ZG(r1) + Z2. Therefore, Z = V4.
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We consider the second case where condition C is not satisfied. We have

g = E8, h = D2′

4 , r1 = A7, r2 = 2D4, D1 + Z2 × T1, D2 + V4, z ∼ A1
1.

Clearly, Z + K0×SL2. From the fact that ZG(E7 +A1) + Z2 and from what has already
been analyzed above we obtain that Z + V4 × SL2.

5.5. Examples of finding the group N = Γ ! ZG(h).

Example 12. Let us prove that in the case of Example 3 we have N + S4. A non-trivial
element of the group Γ obviously normalizes the subgroup D1 + V4 ⊂ Z, but does not
centralize it, since an outer automorphism of the subalgebra h is realized only by an outer
automorphism of the subalgebra D4 ⊂ g (note that D1 = Z(Spin8) ⊂ F4). This clearly
implies that N + S4: every element of the group N that is not contained in D1 acts as
a non-trivial permutation on the set of three elements of order two in the group D1.

Example 13. Let us find the group N for h = A1
3 ⊂ F4 = g. We have Z + Z2 × SL2.

Let σ ∈ Γ be a non-trivial element. Since Aut sl2 = Int sl2, we can assume that σ
centralizes the subgroup Z◦ ⊂ Z. It only remains to determine the element σzσ−1, where
1 (= z ∈ Z2 ⊂ Z. We observe that hσ ∼ B1

2 and N ⊂ ZG(B1
2) + Z2 ! (SL2 × SL2) (the

group Z2 acts by interchanging the direct factors). It is easy to understand the structure
of the embedding N ⊂ ZG(B1

2): corresponding to the element σ is an element of the center
of one of the factors of the form SL2. Therefore σzσ−1 = za, where a ∈ Z(SL2) ⊂ N is
a non-trivial element. Thus, we have described the group N + Z2 ! (Z2 × SL2).

Using a similar method one can examine the cases h = A2′

3 , A2′′

3 ⊂ E7.

Example 14. Let us find the group N in the case of Example 8. Here we have Γ + Z2 and
Z + (SL2 × SL2) ·T1. It is obvious that ZG(C◦) ∼ Spin10 ⊃ H. An outer automorphism
of h is realized in D5 and interchanges the ideals sl2 of zD5(h) + sl2 + sl2. Thus,
N + (Z2 ! (SL2 × SL2)) · T1.

Example 15. Consider the case h = D2
4 ⊂ E7 = g. We have Z + V4 and Γ + S3.

Let the group Γ be generated by automorphisms (of the algebra h) τ of order three, and
σ of order two. We can assume that hτ = A3′

2 , hσ = B2
3 . From Table 13 we see that

ZG(hτ ) + A4 and ZG(hσ) + Z2 !T1 (⊃ Z2×V4. Consequently, none of the elements of Γ
centralizes the group Z. Therefore, N + S4.

6. Tables

Table 5. Restrictions of the simplest representations

g r π1|r

F4 D4 R(π1) + R(π3) + R(π4) + 2N

E6 3A2 R(π1) ⊗ R(π1) ⊗ N + R(π2) ⊗ N ⊗ R(π1) + N ⊗ R(π2) ⊗ R(π2)

E6 A5 2R(π1) + R(π4)

E6 D5 R(π1) + R(π5) + N

E8 2A4 ad +R(π1) ⊗ R(π3) + R(π2) ⊗ R(π1) + R(π3) ⊗ R(π4) + R(π4) ⊗ R(π2)

E8 2D4 ad +R(π1) ⊗ R(π1) + R(π3) ⊗ R(π3) + R(π4) ⊗ R(π4)
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Non-regular simple subalgebras of rank greater than 1
of the exceptional Lie algebras g = E6, E7, E8

Table 6. g = E6

No. h R(h)LS Γ(h)L n(h) Γ(h)

1 sl3 E6 Z2 2 Z2, Z2

2 G2 E6 2

3 sp8 E6 1

4 F4 E6 1

5 sl3 2A2 Z2 1 Z2

6 sl3 2A2 1 1 1

7 sl3 A5 1 1 1

8 so5 A3 1

9 so5 A4 1

10 G2 D4 1

11 sl4 A5 Z2 1 Z2

12 sp6 A5 1

13 so9 D5 1

14 so7 D4 1

15 so5 D5 2

16 sl3 D4, 3A2 Z2 1 Z2

17 sl3 3A2 Z2 1 Z2

Table 7. g = E7

No. h R(h)LS Γ(h)L n(h) Γ(h)

1 sl3 E7 Z2 1 Z2

2 sl3 2A2 Z2 1 Z2

3 sl3 2A2 Z2 1 Z2

4 sl3 D4, 3A2 Z2 1 Z2

5 sl3 3A2 Z2 1 Z2

6 sl3 A′
5 Z2 1 Z2

7 so5 A3 1

8 G2 D4 1

9 so7 D4 1
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Table 7. g = E7 (continued)

No. h R(h)LS Γ(h)L n(h) Γ(h)

10 sp6 A′
5 1

11 so9 D5 1

12 F4 E6 1

13 sl3 E6 Z2 1 Z2

14 so5 D5 1

15 G2 E6 1

16 sl4 A′
5, 2A3 Z2 1 Z2

17 sp8 E6, A7 1

18 so5 A4, 2A3 1

19 sl3 A′′
5 Z2 1 Z2

20 G2 A6 1

21 sp6 A′′
5 1

22 so8 A7 S3 1 S3

23 so11 D6 1

24 sl4 A′′
5 , 2A3 Z2 1 Z2

25 so7 A6, A7 1

26 sl3 A7, A5 + A2 Z2 1 Z2

27 sl3 A5 + A2 Z2 1 Z2

Table 8. g = E8

No. h R(h)LS Γ(h)L n(h) Γ(h)

1 so5 E8 1

2 sl3 D4, 3A2 Z2 1 Z2

3 sl3 3A2 Z2 1 Z2

4 sl3 A5 Z2 1 Z2

5 sl3 E6 Z2 1 Z2

6 so5 A3 1

7 so5 D5 1

8 G2 D4 1

9 G2 E6 1

10 so7 D4 1
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Table 8. g = E8 (continued)

No. h R(h)LS Γ(h)L n(h) Γ(h)

11 sp6 A5 1

12 so9 D5 1

13 F4 E6 1

14 so5 A4, (2A3)
′′ 1

15 sl4 A5, (2A3)
′′ Z2 1 Z2

16 sp8 E6, A
′′
7 1

17 sl3 2A2 Z2 1 Z2

18 sl3 A5 + A2 Z2 1 Z2

19 sl3 E7 Z2 1 Z2

20 so11 D6 1

21 G2 A6, 2D4 1

22 so7 A6, A
′′
7 , 2D4 1

23 sl3 A5 + A2, A
′
7, A

′′
7 , 2D4 Z2 2 Z2, Z2

24 so8 A′′
7 , 2D4 S3 1 S3

25 so8 2D4 S3 1 S3

26 so8 A′
7, 2D4 Z2 1 Z2

27 so5 (2A3)
′ 1

28 so5 A3 + A4 1

29 so5 D7 1

30 G2 D7 1

31 sl4 D8 Z2 1 Z2

32 sp6 D7 1

33 sp8 A′
7 1

34 so13 D7 1

35 so15 D8 1

36 so7 A′
7, 2D4 1

37 sl3 D4 + A2, 4A2 Z2 1 Z2

38 sl4 (2A3)
′ Z2 1 Z2

39 sl3 E6 + A2 Z2 1 1

40 sl5 2A4 Z2 1 Z2

41 so5 2A4, A3 + D5 1

42 so9 A8, D8 1

43 so9 D8 1
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Table 9. Cases of partition of the equivalence classes of embeddings
into exceptional Lie algebras

g h ϕL

E6 sl3 ϕ1 : h ↪→ E6, ϕ2 = σ ◦ ϕ1

G2 ϕ1 : h ↪→ E6, ϕ2 = σ ◦ ϕ1

so5 ϕ1 : h ↪→ D5, ϕ2 = σ ◦ ϕ1

E7 sl3 + sl2 + sl2(+sl2) ϕ1 : h ↪→ D4 + A1 + A1(+A1), ϕ2 = σ ◦ ϕ1

E8 h0 + sl3 ϕ1 : h ↪→ E6 + A2, ϕ2 = ϕ1 ◦ (Id×τ),

h0 = sl3, so5, G2

h0 + sl3 ϕ1 : h ↪→ D4 + D4, ϕ2 = ϕ1 ◦ (Id×τ),

h0 = so8, sl3, sl2 + sl2 + sl2(+sl2)

so5 + sl4 ϕ1 : h ↪→ D5 + A3, ϕ2 = ϕ1 ◦ (Id×τ)

sl3 ϕ1 : h ↪→ E6 + A2, ϕ2 = ϕ1 ◦ τ

sl3 ϕ1 : h ↪→ D4 + D4, ϕ2 = (σ × Id) ◦ ϕ1

The centralizers of simple subalgebras of rank greater than 1
in exceptional Lie groups

Table 10. G = G2

h R(h)S D(h) z Z N

A1
2 A2 Z3 0 Z3 S3

Table 11. G = F4

h R(h)S D(h) z Z N

A1
2 A2 T2 A2

2 SL3 Z2 ! Z

A2
2 Ã2 T2 A1

2 SL3 Z2 ! Z

A3′
2 D4; A2 + Ã2 V4; Z3 0 A4 S4

A3′′
2 A2 + Ã2 Z3 0 Z3 S3

B1
2 B2; A3 T2; Z2 × T1 2A1

1 Z2 ! (SL2
2) Z

G1
2 B3; D4 T1; V4 A8

1 SO3 Z

A1
3 A3 Z2 × T1 A2

1 Z2 × SL2 Z2 ! Z

B1
3 B3; D4 T1; V4 T1 Z2 ! T1 Z
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Table 11. G = F4 (continued)

h R(h)S D(h) z Z N

C1
3 C3 T1 A1

1 SL2 Z

B1
4 B4 Z2 0 Z2 Z

D1
4 D4 V4 0 V4 S4

Table 12. G = E6

h R(h)S D(h) z Z N

A1
2 A2 T4 2A1

2 (SL3
2)/Z3 Z2 ! Z

A2′
2 2A2 T2 A1

2 SL3 Z2 ! Z

A2′′
2 2A2 T2 G1

2 G2 Z

A3′
2 D4; 3A2 T2; Z3 T2 Z3 ! T2 S3 ! Z◦

A3′′
2 3A2 Z3 0 Z3 S3

A5
2 A5 T1 A1

1 SL2 Z

A9
2(1) E6 1 0 1 Z2

A9
2(2) E6 1 0 1 Z2

B1
2 A3 T3 B1

2 + T1 Sp4 ·T1 Z

B2
2 A4 T2 A1

1 + T1 SL2 ·T1 Z

B3
2(1) D5 T1 T1 T1 Z

B3
2(2) D5 T1 T1 T1 Z

G1
2 D4 T2 A2′′

2 PSL3 Z

G3
2(1) E6 1 0 1 Z

G3
2(2) E6 1 0 1 Z

A1
3 A3 T3 2A1

1 + T1 (SL2
2) · T1 Z2 ! Z

A2
3 A5 T1 A1

1 SL2 Z2 × Z

B1
3 D4 T2 A2

1 + T1 SL2 ·T1 Z

C1
3 A5 T1 A1

1 SL2 Z

A1
4 A4 T2 A1

1 + T1 SL2 ·T1 Z

B1
4 D5 T1 T1 T1 Z

C1
4 E6 1 0 1 Z

D1
4 D4 T2 T2 T2 S3 ! Z

F 1
4 E6 1 0 1 Z

A1
5 A5 T1 A1

1 SL2 Z

D1
5 D5 T1 T1 T1 Z
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Table 13. G = E7

h R(h)S D(h) z Z N

A1
2 A2 T5 A′′

5 SL6 /Z2 Z2 ! Z

A2′
2 2A2 T3 A1

2 + A3′′
1 SL3 ×SO3 Z2 ! Z

A2′′
2 2A2 T3 G1

2 + T1 G2 ×T1 Z2 ! Z

A3′
2 D4; 3A2 T3; Z3 × T1 3A1

1 Z3 ! ((SL2
3)/Z2) S3 ! Z◦

A3′′
2 3A2 Z3 × T1 A3′′

1 Z3 × SO3 S3 × Z◦

A5′
2 A′

5 T2 A1
1 + T1 SL2 ×T1 Z2 ! Z

A5′′
2 A′′

5 T2 A1
2 SL3 Z2 ! Z

A6′
2 A5 + A2; A7 Z3; Z2 0 A4 S4

A6′′
2 A5 + A2 Z3 0 Z3 S3

A9
2 E6 T1 T1 T1 Z2 × Z

A21
2 E7 1 0 1 Z2

B1
2 A3 T4 B1

3 + A1
1 (Spin7 ×SL2)/Z2 Z

B2
2 A4; 2A3 T3; Z2 × T1 A1

2 + T1 Z2 ! (SL3 ·T1) Z

B3
2 D5 T2 A1

1 + T1 SL2 ·T1 Z

G1
2 D4 T3 C1′′

3 PSp6 Z

G2
2 A6 T1 A7

1 SO3 Z

G3
2 E6 T1 T1 T1 Z

A1
3 A3 T4 A1

3 + A1
1 (SL4 ×SL2)/Z2 Z2 ! Z

A2′
3 A′

5; 2A3 T2; Z2 × T1 A1
1 + T1 Z2 ! (SL2 ×T1) Z2 × Z

A2′′
3 A′′

5 ; 2A3 T2; Z2 × T1 A1
2 Z2 ! SL3 Z2 × Z

B1
3 D4 T3 B1

2 + A1
1 (Sp4 × SL2)/Z2 Z

B2
3 A6; A7 T1; Z2 T1 Z2 ! T1 Z

C1′
3 A′

5 T2 A1
1 + A3′′

1 SL2 ×SO3 Z

C1′′
3 A′′

5 T2 G1
2 G2 Z

A1
4 A4 T3 A1

2 + T1 SL3 ·T1 Z2 ! Z

B1
4 D5 T2 A1

1 + A2
1 (SL2

2)/Z2 Z

C1
4 E6; A7 T1; Z2 T1 Z2 ! T1 Z

D1
4 D4 T3 3A1

1 (SL2
3)/Z2 S3 ! Z

D2
4 A7 Z2 0 V4 S4

F 1
4 E6 T1 A3′′

1 SO3 Z

A1′
5 A′

5 T2 A1
1 + T1 SL2 ×T1 Z2 ! Z
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Table 13. G = E7 (continued)

h R(h)S D(h) z Z N

A1′′
5 A′′

5 T2 A1
2 SL3 Z2 ! Z

B1
5 D6 T1 A1

1 SL2 Z

D1
5 D5 T2 A1

1 + T1 SL2 ·T1 Z2 ! Z

A1
6 A6 T1 T1 T1 Z2 ! Z

D1
6 D6 T1 A1

1 SL2 Z

E1
6 E6 T1 T1 T1 Z2 ! Z

A1
7 A7 Z2 0 Z2 V4

Table 14. G = E8

h R(h)S D(h) z Z N

A1
2 A2 T6 E1

6 Ê6 Z2 ! Z

A2
2 2A2 T4 G1

2 + A1
2 G2 × SL3 Z2 ! Z

A3′
2 D4; 3A2 T4; Z3 × T2 D1

4 Z3 ! Spin8 S3 ! Z◦

A3′′
2 3A2 Z3 × T2 G1

2 Z3 × G2 S3 × Z◦

A4
2 D4 + A2; 4A2 T2; Z3

3 T2 Z3 ! T2 S3 ! Z◦

A5
2 A5 T3 A1

2 + A1
1 SL3 ×SL2 Z2 ! Z

A6′
2 (1) A5 + A2; A

′′
7 ; 2D4 Z3 × T1; Z2 × T1; V4 A1

1 A4 × SL2 S4 × Z◦

A6′
2 (2) A′

7; 2D4 T1; V4 A16
1 SO3 Z2 × Z

A6′′
2 A5 + A2 Z3 × T1 A1

1 Z3 × SL2 S3 × Z◦

A9
2 E6 T2 A1

2 SL3 Z2 × Z

A10
2 E6 + A2 Z3 0 Z3 Z

A21
2 E7 T1 A1

1 SL2 Z2 × Z

B1
2 A3 T5 B1

5 Spin11 Z

B2′
2 A4; (2A3)

′′ T4; Z2 × T2 A4 Z2 ! SL5 Z

B2′′
2 (2A3)

′ T2 B2′′
2 Sp4 Z

B3′
2 D5 T3 A3 SL4 Z

B3′′
2 A4 + A3 T1 A10′′

1 SL4 Z

B4
2 2A4; D5 + A3 Z5; Z4 0 Z4 ! Z5 Z

B7
2 D7 T1 T1 T1 Z

B12
2 E8 1 0 1 Z
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Table 14. G = E8 (continued)

h R(h)S D(h) z Z N

G1
2 D4 T4 F 1

4 F4 Z

G2
2 A6; 2D4 T2; V4 A1

1 + A7
1 SL2 × SO3 Z

G3
2 E6 T2 A1

2 SL3 Z

G4
2 D7 T1 T1 T1 Z

A1
3 A3 T5 D1

5 Spin10 Z2 ! Z

A2′
3 A5; (2A3)

′′ T3; Z2 × T2 A1
2 + A1

1 (Z2 ! SL3) × SL2 Z2 × Z

A2′′
3 (2A3)

′ T2 A4′
1 + T1 SL2 ·T1 Z2 ! Z

A4
3 D8 Z2 0 Z2 V4

B1
3 D4 T4 B1

4 Spin9 Z

B2′
3 A6; A

′′
7 ; 2D4 T2; Z2 × T1; V4 A1

1 + T1 (Z2 ! T1) × SL2 Z

B2′′
3 A′

7; 2D4 T1; V4 T1 Z2 ! T1 Z

C1
3 A5 T3 G1

2 + A1
1 G2 ×SL2 Z

C2
3 D7 T1 T1 T1 Z

A1
4 A4 T4 A1

4 SL5 Z2 ! Z

A2
4 2A4 Z5 0 Z5 Z2 ! Z

B1
4 D5 T3 B1

3 Spin7 Z

B2′
4 A8; D8 Z3; Z2 0 S3 Z

B2′′
4 D8 Z2 0 Z2 Z

C1′
4 E6; A

′′
7 T2; Z2 × T1 A1

2 Z2 ! SL3 Z

C1′′
4 A′

7 T1 A4′
1 SL2 Z

D1
4 D4 T4 D1

4 Spin8 S3 ! Z

D2′
4 A′′

7 ; 2D4 Z2 × T1; V4 A1
1 V4 × SL2 S4 × Z◦

D2′′
4 2D4 V4 0 V4 S4

D2′′′
4 A′

7; 2D4 T1; V4 T1 Z2 ! T1 Z2 × Z

F 1
4 E6 T2 G1

2 G2 Z

A1
5 A5 T3 A1

2 + A1
1 SL3 ×SL2 Z2 ! Z

B1
5 D6 T2 B1

2 Sp4 Z

D1
5 D5 T3 A1

3 SL4 Z2 ! Z

A1
6 A6 T2 A1

1 + T1 SL2 ·T1 Z2 ! Z

D1
6 D6 T2 2A1

1 SL2
2 Z2 ! Z

E1
6 E6 T2 A1

2 SL3 Z2 ! Z
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Table 14. G = E8 (continued)

h R(h)S D(h) z Z N

A1′
7 A′′

7 Z2 × T1 A1
1 Z2 × SL2 Z2 × Z

A1′′
7 A′

7 T1 T1 T1 Z2 ! Z

B1
7 D8 Z2 0 Z2 Z

D1
7 D7 T1 T1 T1 Z2 ! Z

E1
7 E7 T1 A1

1 SL2 Z

A1
8 A8 Z3 0 Z3 S3

D1
8 D8 Z2 0 Z2 Z
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