Triads and short SO_{3}-subgroups of compact groups

A. N. Minchenko

Let G be a compact Lie group, let $\mathfrak{g}=\operatorname{Lie} G$, let Ad: $G \rightarrow \mathrm{GL}(\mathfrak{g})$ be the adjoint representation, and let ad: $\mathfrak{g} \rightarrow \mathfrak{g l}(g)$ be the differential of Ad.

By a triad in G we mean a family of three conjugate involutive elements with product the identity (in particular, they commute). For instance, the elements $\operatorname{diag}(1,-1,-1)$, $\operatorname{diag}(-1,1,-1)$, and $\operatorname{diag}(-1,-1,1)$ form a triad in the group SO_{3} (and any other triad is conjugate to this one). A subgroup $H \subset G$ isomorphic to SO_{3} is called a short SO_{3}-subgroup if the dimension of any irreducible Ad H-submodule of \mathfrak{g} does not exceed 5 (that is, is equal to 1,3 , or 5).

Everywhere below, G stands for a connected simple compact Lie group with trivial centre. In [1] all triads (up to conjugation) and short SO_{3}-subgroups of G were found, and the following theorem was proved using the coincidence of the lists obtained.

Theorem 1. Every triad in the group G is contained in a unique (up to conjugation) short SO_{3}-subgroup.

É. B. Vinberg suggested that one can find a proof of the theorem more conceptual than comparison of classifications. The aim of the present note is to give such a proof. In what follows, we use Lie group theory [2] together with the theory of Riemannian and symmetric spaces [3], [4].

Let X be the symmetric space of the group G. It is clear that the action $G: X$ is effective. We denote by $s_{x} \in \operatorname{Isom} X$ the symmetry with respect to the point $x \in X$.

Lemma 1. Let $\gamma: \mathbb{R} \rightarrow X$ be a geodesic and let $P: \mathbb{R} \rightarrow G$ be the group of (parallel) shifts along γ : $P(t) \gamma(0)=\gamma(t)$. Suppose that the points $x, y \in \operatorname{Im} \gamma$ are such that $s_{x} s_{y}=s_{y} s_{x}$. Let $s=s_{x} s_{y}$ and denote by $p \in \operatorname{Im} P$ the shift from x to y. Then

1) $P(t)=\exp t \xi$, where $\xi \in \mathfrak{g}, s_{x} \xi=s_{y} \xi=-\xi$, and $s \xi=\xi$,
2) $p^{2}=s$ (in particular, $p y=x$, and thus the curve γ is closed).

A geodesic $\gamma: \mathbb{R} \rightarrow X$ is said to be shortest with respect to the points $x, y \in \operatorname{Im} \gamma$ if it contains the shortest segment with endpoints x and y.

Lemma 2. In the notation of Lemma 1, let $\mathfrak{m}=\{\eta \in \mathfrak{g} \mid s \eta=-\eta\}$. In this case if γ is a shortest geodesic with respect to the points x of y and has period π, then ad $\left.\xi\right|_{\mathfrak{m}} ^{2}=-1$.

Proof. We can assume that $\gamma(0)=x$. Then $\gamma(\pi / 2)=y$ and the points x and $\gamma(t)$ are not conjugate along the geodesic γ for $t \in(0, \pi / 2)$. According to [4] (Chap. 7, Proposition 3.1), the points x and $\gamma(t)$ are conjugate along γ if and only if among the non-zero eigenvalues of the operator $\operatorname{ad} t \xi: \mathfrak{g}(\mathbb{C})$ there is a multiple of πi. Since $\exp \pi \xi=s$, it follows that all the eigenvalues of the operator ad $\left.\xi\right|_{\mathfrak{m}(\mathbb{C})}$ have the form $(2 k+1) i, k \in \mathbb{Z}$. This, together with the absence of conjugate points for $t \in(0, \pi / 2)$, implies that all the eigenvalues of this operator are equal to $\pm i$ and completes the proof of Lemma 2 .

Suppose now that $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ is a triad in G. In what follows, the index r ranges over the numbers $1,2,3$. We write $K_{r}=Z\left(s_{r}\right), L=Z(S), \mathfrak{k}_{r}=\operatorname{Lie} K_{r}$, and $\mathfrak{l}=\operatorname{Lie} L$. The triad S naturally induces a $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$-grading on the algebra \mathfrak{g},

$$
\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{j}_{1} \oplus \mathfrak{j}_{2} \oplus \mathfrak{j}_{3}
$$

AMS 2000 Mathematics Subject Classification. Primary 22C05; Secondary 22E20.
DOI 10.1070/RM2007v062n05ABEH004465.
where \mathfrak{j}_{r} stands for the orthogonal complement of \mathfrak{l} in \mathfrak{k}_{r}. We denote the orthogonal complement of \mathfrak{k}_{r} in \mathfrak{g} by \mathfrak{m}_{r}. Since the Lie algebra \mathfrak{g} is simple, we have $\left[\mathfrak{m}_{r}, \mathfrak{m}_{r}\right]=\mathfrak{k}_{r}$.

Let us consider the symmetric space $X=G / K_{1}$. By the definition of K_{1}, every symmetry on X has exactly one fixed point. Let $o_{r} \in X$ be a point such that $s_{o_{r}}=s_{r}$. We denote the triple $\left\{o_{1}, o_{2}, o_{3}\right\}$ by S_{X}.

An element $\xi \in \mathfrak{j}_{r}$ is called an S-characteristic element if $\left.\operatorname{ad} \xi\right|_{\mathfrak{m}_{r}} ^{2}=-1$. In this case $\exp \pi \xi=s_{r}$. We recall that by a defining vector of an $\mathfrak{s l}_{2}$-subalgebra (of a complex Lie algebra) one means any semisimple element of it which can be supplemented by two nilpotent elements to form a standard $\mathfrak{s l}_{2}$-triple. Two $\mathfrak{s l}_{2}$-subalgebras of $\mathfrak{g}(\mathbb{C})$ are conjugate if and only if their defining vectors are conjugate ([5], Theorem 8.1).

Lemma 3. Let $\xi_{1} \in \mathfrak{j}_{1}$ and $\xi_{2} \in \mathfrak{j}_{2}$ be S-characteristic elements and let $\left[\xi_{1}, \xi_{2}\right]=\xi_{3} \in \mathfrak{j}_{3}$. Then the vectors ξ_{1}, ξ_{2}, ξ_{3} form a basis of the tangent algebra of a short SO_{3}-subgroup containing the triad S. Any two vectors in the family $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ are conjugate by an element of $N(S)$.

Proof. One can readily prove that $\left[\xi_{3}, \xi_{1}\right]=\xi_{2}$ and $\left[\xi_{2}, \xi_{3}\right]=\xi_{1}$. Thus, the indicated vectors span a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ isomorphic to $\mathfrak{s o}_{3}$. Let $\mathfrak{h}=$ Lie H, where $H \subset G$ is a connected subgroup. Since $\left[\mathfrak{m}_{r}, \mathfrak{m}_{r}\right]=\mathfrak{k}_{r}$, we see that the eigenvalues of the operator ad ξ_{1} are equal to $0, \pm i$, and possibly $\pm 2 i$. Hence, any defining vector of the subalgebra $\mathfrak{h}(\mathbb{C})$ (for instance, $2 i \xi_{1}$) has the eigenvalues $0, \pm 2$, and possibly ± 4. Thus, $H \subset G$ is a short SO_{3}-subgroup. It contains the elements $s_{1}=\exp \pi \xi_{1}$ and $s_{2}=\exp \pi \xi_{2}$, and thus the entire triad S. The rest of the proof is obvious.

A geodesic γ on X is said to be S-shortest if γ is shortest with respect to some pair of points in S_{X}.

Lemma 4. Let $\xi \in \mathfrak{j}_{r}$. The following conditions are equivalent:

1) ξ is S-characteristic;
2) ξ is the velocity vector of an S-shortest geodesic of period π;
3) $2 i \xi$ is a defining vector of the tangent algebra of the complexification of a short SO_{3}-subgroup of G containing the triad S.
All S-characteristic elements are $N(S)$-equivalent.
Proof. We can assume that $\xi \in \mathfrak{j}_{1}$. Let the element ξ be S-characteristic. We take the velocity vector $\eta \in \mathfrak{j}_{2}$ of any geodesic that is shortest with respect to the points o_{1} and o_{3} and has period π. Then by Lemma 2 the vector η is S-characteristic, and by Lemma 3 the vectors ξ and η are conjugate by an element of the group K_{3}. Thus, ξ is the velocity vector of some geodesic that is shortest with respect to o_{2} and o_{3} and has period π. This proves the implication 1$) \Rightarrow 2$). The implications 2$) \Rightarrow 3) \Rightarrow 1$) are obvious.

Let us prove the last assertion. Let ξ and η be S-characteristic elements. There is an element $g \in N(S)$ such that the vectors ξ and $(\operatorname{Ad} g) \eta$ belong to distinct homogeneous components with respect to the above $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$-grading. By Lemma 3 , these vectors are $N(S)$-conjugate. Thus, the same holds for the vectors ξ and η. This completes the proof of Lemma 4.

The proof of the main theorem is now obvious. The existence follows immediately from Lemmas 2 and 3, and the uniqueness follows from Lemma 4 and Theorem 8.1 in [5].

Bibliography

[1] E. B. Vinberg, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, vol. 213, Amer. Math. Soc., Providence, RI 2005, pp. 243-270.
[2] Э. Б. Винберг, А. Л. Онищик, Семинар по группам Ли и алгебраическим группам, УPCC, Москва 1995; English transl., A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer, Berlin 1990.
[3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, Wiley, New York 1963; vol. 2, 1969.
[4] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., vol. 12, Acad. Press, New York-London 1962.
[5] Е. Б. Дынкин, Матем. сб. 30:2 (1952), 349-462; English transl., E. B. Dynkin, Amer. Math. Soc. Transl. (2) 6 (1957), 111-243.
A. N. Minchenko

Moscow State University
E-mail: minchenko@mccme.ru

