Triads and short SO₃-subgroups of compact groups

A.N. Minchenko

Let G be a compact Lie group, let $\mathfrak{g} = \text{Lie } G$, let Ad: $G \to \text{GL}(\mathfrak{g})$ be the adjoint representation, and let ad: $\mathfrak{g} \to \mathfrak{gl}(g)$ be the differential of Ad.

By a triad in G we mean a family of three conjugate involutive elements with product the identity (in particular, they commute). For instance, the elements diag(1, -1, -1), diag(-1, 1, -1), and diag(-1, -1, 1) form a triad in the group SO₃ (and any other triad is conjugate to this one). A subgroup $H \subset G$ isomorphic to SO₃ is called a *short* SO₃-subgroup if the dimension of any irreducible Ad H-submodule of \mathfrak{g} does not exceed 5 (that is, is equal to 1, 3, or 5).

Everywhere below, G stands for a connected simple compact Lie group with trivial centre. In [1] all triads (up to conjugation) and short SO₃-subgroups of G were found, and the following theorem was proved using the coincidence of the lists obtained.

Theorem 1. Every triad in the group G is contained in a unique (up to conjugation) short SO_3 -subgroup.

E. B. Vinberg suggested that one can find a proof of the theorem more conceptual than comparison of classifications. The aim of the present note is to give such a proof. In what follows, we use Lie group theory [2] together with the theory of Riemannian and symmetric spaces [3], [4].

Let X be the symmetric space of the group G. It is clear that the action G: X is effective. We denote by $s_x \in \text{Isom } X$ the symmetry with respect to the point $x \in X$.

Lemma 1. Let $\gamma \colon \mathbb{R} \to X$ be a geodesic and let $P \colon \mathbb{R} \to G$ be the group of (parallel) shifts along $\gamma \colon P(t)\gamma(0) = \gamma(t)$. Suppose that the points $x, y \in \operatorname{Im} \gamma$ are such that $s_x s_y = s_y s_x$. Let $s = s_x s_y$ and denote by $p \in \operatorname{Im} P$ the shift from x to y. Then

- 1) $P(t) = \exp t\xi$, where $\xi \in \mathfrak{g}$, $s_x \xi = s_y \xi = -\xi$, and $s\xi = \xi$,
- 2) $p^2 = s$ (in particular, py = x, and thus the curve γ is closed).

A geodesic $\gamma \colon \mathbb{R} \to X$ is said to be *shortest with respect to the points* $x, y \in \operatorname{Im} \gamma$ if it contains the shortest segment with endpoints x and y.

Lemma 2. In the notation of Lemma 1, let $\mathfrak{m} = \{\eta \in \mathfrak{g} \mid s\eta = -\eta\}$. In this case if γ is a shortest geodesic with respect to the points x of y and has period π , then $\mathrm{ad} \xi|_{\mathfrak{m}}^2 = -1$.

Proof. We can assume that $\gamma(0) = x$. Then $\gamma(\pi/2) = y$ and the points x and $\gamma(t)$ are not conjugate along the geodesic γ for $t \in (0, \pi/2)$. According to [4] (Chap. 7, Proposition 3.1), the points x and $\gamma(t)$ are conjugate along γ if and only if among the non-zero eigenvalues of the operator ad $t\xi : \mathfrak{g}(\mathbb{C})$ there is a multiple of πi . Since $\exp \pi \xi = s$, it follows that all the eigenvalues of the operator ad $\xi|_{\mathfrak{m}(\mathbb{C})}$ have the form $(2k+1)i, k \in \mathbb{Z}$. This, together with the absence of conjugate points for $t \in (0, \pi/2)$, implies that all the eigenvalues of this operator are equal to $\pm i$ and completes the proof of Lemma 2.

Suppose now that $S = \{s_1, s_2, s_3\}$ is a triad in G. In what follows, the index r ranges over the numbers 1, 2, 3. We write $K_r = Z(s_r)$, L = Z(S), $\mathfrak{t}_r = \text{Lie } K_r$, and $\mathfrak{l} = \text{Lie } L$. The triad S naturally induces a $(\mathbb{Z}_2 \times \mathbb{Z}_2)$ -grading on the algebra \mathfrak{g} ,

$$\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{j}_1 \oplus \mathfrak{j}_2 \oplus \mathfrak{j}_3$$

AMS 2000 Mathematics Subject Classification. Primary 22C05; Secondary 22E20. DOI 10.1070/RM2007v062n05ABEH004465.

where \mathfrak{j}_r stands for the orthogonal complement of \mathfrak{l} in \mathfrak{k}_r . We denote the orthogonal complement of \mathfrak{k}_r in \mathfrak{g} by \mathfrak{m}_r . Since the Lie algebra \mathfrak{g} is simple, we have $[\mathfrak{m}_r, \mathfrak{m}_r] = \mathfrak{k}_r$.

Let us consider the symmetric space $X = G/K_1$. By the definition of K_1 , every symmetry on X has exactly one fixed point. Let $o_r \in X$ be a point such that $s_{o_r} = s_r$. We denote the triple $\{o_1, o_2, o_3\}$ by S_X .

An element $\xi \in \mathfrak{j}_r$ is called an *S*-characteristic element if $\operatorname{ad} \xi|_{\mathfrak{m}_r}^2 = -1$. In this case $\exp \pi \xi = s_r$. We recall that by a *defining vector* of an \mathfrak{sl}_2 -subalgebra (of a complex Lie algebra) one means any semisimple element of it which can be supplemented by two nilpotent elements to form a standard \mathfrak{sl}_2 -triple. Two \mathfrak{sl}_2 -subalgebras of $\mathfrak{g}(\mathbb{C})$ are conjugate if and only if their defining vectors are conjugate ([5], Theorem 8.1).

Lemma 3. Let $\xi_1 \in j_1$ and $\xi_2 \in j_2$ be S-characteristic elements and let $[\xi_1, \xi_2] = \xi_3 \in j_3$. Then the vectors ξ_1 , ξ_2 , ξ_3 form a basis of the tangent algebra of a short SO₃-subgroup containing the triad S. Any two vectors in the family $\{\xi_1, \xi_2, \xi_3\}$ are conjugate by an element of N(S).

Proof. One can readily prove that $[\xi_3, \xi_1] = \xi_2$ and $[\xi_2, \xi_3] = \xi_1$. Thus, the indicated vectors span a subalgebra $\mathfrak{h} \subset \mathfrak{g}$ isomorphic to \mathfrak{so}_3 . Let $\mathfrak{h} = \operatorname{Lie} H$, where $H \subset G$ is a connected subgroup. Since $[\mathfrak{m}_r, \mathfrak{m}_r] = \mathfrak{k}_r$, we see that the eigenvalues of the operator $\operatorname{ad} \xi_1$ are equal to $0, \pm i$, and possibly $\pm 2i$. Hence, any defining vector of the subalgebra $\mathfrak{h}(\mathbb{C})$ (for instance, $2i\xi_1$) has the eigenvalues $0, \pm 2$, and possibly ± 4 . Thus, $H \subset G$ is a short SO₃-subgroup. It contains the elements $s_1 = \exp \pi \xi_1$ and $s_2 = \exp \pi \xi_2$, and thus the entire triad S. The rest of the proof is obvious.

A geodesic γ on X is said to be S-shortest if γ is shortest with respect to some pair of points in S_X .

Lemma 4. Let $\xi \in \mathfrak{j}_r$. The following conditions are equivalent:

- 1) ξ is S-characteristic;
- 2) ξ is the velocity vector of an S-shortest geodesic of period π ;
- 2iξ is a defining vector of the tangent algebra of the complexification of a short SO₃-subgroup of G containing the triad S.

All S-characteristic elements are N(S)-equivalent.

Proof. We can assume that $\xi \in j_1$. Let the element ξ be *S*-characteristic. We take the velocity vector $\eta \in j_2$ of any geodesic that is shortest with respect to the points o_1 and o_3 and has period π . Then by Lemma 2 the vector η is *S*-characteristic, and by Lemma 3 the vectors ξ and η are conjugate by an element of the group K_3 . Thus, ξ is the velocity vector of some geodesic that is shortest with respect to o_2 and o_3 and has period π . This proves the implication $1 \Rightarrow 2$). The implications $2 \Rightarrow 3 \Rightarrow 1$ are obvious.

Let us prove the last assertion. Let ξ and η be S-characteristic elements. There is an element $g \in N(S)$ such that the vectors ξ and $(\operatorname{Ad} g)\eta$ belong to distinct homogeneous components with respect to the above $(\mathbb{Z}_2 \times \mathbb{Z}_2)$ -grading. By Lemma 3, these vectors are N(S)-conjugate. Thus, the same holds for the vectors ξ and η . This completes the proof of Lemma 4.

The proof of the main theorem is now obvious. The existence follows immediately from Lemmas 2 and 3, and the uniqueness follows from Lemma 4 and Theorem 8.1 in [5].

Bibliography

 E. B. Vinberg, *Lie groups and invariant theory*, Amer. Math. Soc. Transl. Ser. 2, vol. 213, Amer. Math. Soc., Providence, RI 2005, pp. 243–270.

- [2] Э.Б. Винберг, А.Л. Онищик, Семинар по группам Ли и алгебраическим группам, УРСС, Москва 1995; English transl., A.L. Onishchik and E.B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer, Berlin 1990.
- [3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, Wiley, New York 1963; vol. 2, 1969.
- [4] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., vol. 12, Acad. Press, New York–London 1962.
- [5] Е.Б. Дынкин, Mamem. cб. 30:2 (1952), 349–462; English transl., E.B. Dynkin, Amer. Math. Soc. Transl. (2) 6 (1957), 111–243.

A.N. Minchenko

Moscow State University E-mail: minchenko@mccme.ru Presented by È. B. Vinberg Accepted 31/JUL/07 Translated by A. I. SHTERN