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Abstract

This short note presents in an explicit manner the equivariant structure
of the cotangent sheaf on any scheme with an arbitrary group action. Also,
we discuss why the group should act on the cohomology of any equivariant
sheaf.

1 Equivariant sheaves

Fix a scheme S. For this note we will work on the category of schemes over S. All
schemes will have an implicit structure map to S. All unlabeled products are to
be interpreted as fiber products over S.

Let X be a S-scheme. Let G be a group scheme over S. Let us denote by
m : G × G → G the multiplication morphism. Let a : G × X → X be a left
action of G on X. Recall that this means that for all schemes T the induced map
G(T )×X(T )→ X(T ) is a left action of the group G(T ) on the set X(T ).

Let us set up the notation for the groupoid scheme associated to the action
a. This is just the groupoid in schemes whose stackification is the quotient stack
[G\X]. We have a diagram

G×G×X
p12−−→
p23−−→
p13−−→

G×X
p1−→
p2−→
X

The morphisms depicted above are defined as follows (on T -points)

p1(g, x) = a(g, x).

p2(g, x) = x.

p12(g, h, x) = (g, a(h, x).

p23(g, h, x) = (g, x).

p13(g, h, x) = (gh, x).

In addition, define

s1 = p1p12 = p1p13.
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s2 = p2p12 = p1p23.

s3 = p2p13 = p2p23.

An equivariant sheaf is just a quasicoherent sheaf on this groupoid scheme.
Let’s spell this out.

Definition 1.1. Let F be a quasicoherent sheaf on X. A G-equivariant structure
on F consists of the datum of an isomorphism ϕ : p∗1F → p∗2F . This isomorphism
is required to make the following diagram commute

s∗1F p∗13p
∗
1F p∗13p

∗
2F s∗3F

p∗12p
∗
1F p∗12p

∗
2F p∗23p

∗
1F p∗23p

∗
2F

∼

∼ p∗13ϕ ∼

p∗12ϕ ∼ p∗23ϕ

∼

Remark 1.2. Basically, the condition above says that the two obvious ways to go
from s∗1F to s∗3F coincide.

2 Example: the cotangent bundle

Let X and G be as in the previous section. There is always a natural G-equivariant
structure on the sheaf of Kähler differentials Ω1

X/S. Let us describe how this works.

Recall that for any maps of S-schemes f : X → Y , there is an associated
morphism of cotangent sheaves df : f ∗Ω1

Y/S → Ω1
X/S. The operation d 7→ df

behaves well under composition; the reader can be trusted with determining the
right commutative diagram for compositions.

By working affine locally, one can also see that Ω1
−/S is well-behaved with

respect to products. Let’s spell this out for the product G×X. Notice that there
are two projections pr1 : G × X → G and pr2 : G × X → X. These yields two
maps dpr1 : pr∗1Ω

1
G/S → Ω1

G×X/S and dpr2 : pr∗2Ω
1
X/S → Ω1

G×X/S. Both of these are

injective, so we can identify pr∗1Ω
1
G/S and pr∗2Ω

1
X/S with their respective images in

Ω1
G×X/S. It turns out that the images span Ω1

G×X/S and do not intersect. So we

get a direct sum decomposition Ω1
G×X/S = pr∗1Ω

1
G/S ⊕ pr∗2Ω

1
X/S. We will denote by

π1, π2 the projections from Ω1
G×X/S onto these direct summands.

The G-equivariant structure on Ω1
X/S is given by the composition

p∗1Ω
1
X/S

dp1−−→ Ω1
G×X

π2−→ pr∗2Ω
1
X/S = p∗2Ω

1
X/S

A section ω ∈ H0(X,Ω1
X/S) is called G-invariant if π2(p

∗
1ω) = p∗2ω. For example,

a 1-form ω on G is bi-invariant exactly when π1(m
∗ω) = pr∗1ω and π2(m

∗ω) = pr∗2ω.
In other words, m∗ω = pr∗1ω + pr∗2ω. This is something that one sees early on
when proving results about elliptic curves using the invariant differential.
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3 Action on cohomology

Let X and G be as in the previous sections. We will suppose that the structure
morphism π : X → S is quasicompact and quasiseparated.

Let K be a quasicoherent sheaf on S. We want to make clear what we mean by
a representation of the group G on K. When G is affine over S, such representation
is determined by giving K the structure of a comodule over the OS-Hopf algebra
OG. We use a functorial approach to generalize to nonaffine groups.

Definition 3.1. Let K be a quasicoherent sheaf on S. We define Aut(K) to be the
functor from S-schemes into groups given as follows. For any f : T → S, we set

Aut(K) (T ) := {OT -automorphisms of the sheaf f ∗K }

Remark 3.2. One needs to use the canonical isomorphism between the pullback of
a composition and the composition of pullbacks in order to realize the functoriality
of Aut(K).

Definition 3.3. Let K be a quasicoherent sheaf on S. A G-representation on K
is a natural transformation τ : G→ Aut(K) of group functors.

Remark 3.4. The Yoneda lemma tells us that τ is the same as giving an element in
Aut(K)(G). This is the same as equipping K with the structure of a G-equivariant
sheaf (here G acts trivially on S).

Suppose now that the structure homomorphism f : G → S is flat. Let F be
a G-equivariant sheaf on X. Then, the derived pushforwards Riπ∗F acquire the
structure of a G-representation for all i ≥ 0. Let us see how this works. We have
to give a natural transformation τ : G → Aut(Riπ∗F). By the Yoneda Lemma,
this amounts to giving an element of Aut(Riπ∗F) (G). So we are looking for an
automorphism of the sheaf f ∗Riπ∗F on G. Notice that we have the following
Cartesian diagrams

G×X X

G S

pr1

p1

π

f

G×X X

G S

pr1

p2

π

f

Since π is quasicompact and quasi-separated, flat base-change tells us that there
are canonical isomorphisms f ∗Riπ∗F

∼−→ Ripr1, ∗p
∗
1F and f ∗Riπ∗F

∼−→ Ripr1, ∗p
∗
2F .

The automorphism giving the sought-after G-representation is given by the com-
position

f ∗Riπ∗F
∼−→ Ripr1, ∗p

∗
1F

Ripr1, ∗ϕ−−−−−→ Ripr1, ∗p
∗
2F

∼−→ f ∗Riπ∗F
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where ϕ : p∗1F → p∗2F is the isomorphism coming from the G-equivariant
structure on F .

Note that we crucially used the fact that G is flat in the description above. If
G is not flat, then derived considerations kick in, and one can’t expect an action
of G on each higher pushforward. If F is S-flat, then one can use a good Cech
hypercover to describe a flat representative C• for the derived pushforward Rπ∗F
(if π is separated it suffices to take a Zariski cover of X consisting of sets that are
affine over S). Then one can define in an obvious way a group functor Aut(C•) of
automorphisms of the complex C•. We can use the base-change of the hypercover
to G in order to compute the derived pushforward Rpr1, ∗. Since F is flat, f ∗C•

is canonically isomorphic to Rpr1 ∗p
∗
1F when the latter is computed using the

base-changed hypercover. The same goes for Rpr1 ∗p
∗
2F . So we can use a similar

description as above to obtain an action of G on the complex C• of quasicoherent
sheaves on S.

If neither G nor F are flat over S, then one has to deal with derived pullbacks.
In this generality it useful to use the derived category. We want to define an
action of G on an object of D(QCoh(S)). Derived algebraic geometry seems the
most natural context to answer these kinds of questions. Notice that the original
argument we gave for G flat works verbatim once we take derived fiber products.
This in turn tells us how to define the concept of G-equivariant structure in the
context of derived algebraic geometry (an isomorphism of the two pullbacks of F to
the derived fiber product G×LX satisfying an analogous cocycle condition). This
is the natural set-up if one wants to obtain G-representations on the cohomology
of equivariant sheaves when G is not flat.

Remark 3.5. One can translate this concrete picture with group actions on sheaves
into the language of stacks. What we are doing is computing the pushforward of the
morphism [G\X]→ [G\S] induced on quotient stacks (these are algebraic stacks
when G is smooth). We are just spelling out what is the G-equivariant strucure
on the pushforward.

4 Example: Hoschild Cohomology

Let S be a scheme and f : G→ S be a smooth qcqs group scheme over S. Let F
be a quasicoherent sheaf on S.

Definition 4.1. QCohG(S) is defined to be the abelian category of quasicoher-
ent sheaves on S equipped with a G-action. Here the morphisms are required to
intertwine the G-action.

There is a forgetful functor F : QCohG(S)→ QCoh(S) that is exact and reflects
isomorphisms. It turns out that F admits a left adjointH : QCoh(S)→ QCohG(S).
Let’s describe H. Notice that the quasicoherent sheaf f∗OG is equipped with an
action induced by right translations. Here one needs to use flat base-change in
order to describe the action, the diagrams are the same as in the previous section.
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For any F ∈ QCoh(S), we define H(F) = F ⊗ f∗OG. We equip this sheaf with a
G-action by letting G act on the second factor of the tensor product.

We can use the adjunction (F,H) to see that QCohG(S) has enough injectives.
Just use the fact that QCoh(S) has enough injectives and R preserves injectives.
Consider the functor Inv : QCohG(S) → QCoh(S) that takes G-invariants of a
given quasicoherent sheaf (you can just take G(U) invariants of global sections for
every U ⊂ S open). For any F ∈ QCohG(S), the right derived functors RiInvF
are called the Hoschild cohomology of the quasicoherent G-module F . They are
the scheme-theoretic analogues of abstract group cohomology. This cohomology
groups become very useful in the theory of algebraic groups, because they arise
naturally as obstructions to splitting exact sequences or lifting homomorphisms
of groups. One example is the proof of existence of Levi subgroups for algebraic
groups over a field of char 0. See [Con14, B.2] or [CGP15] for more applications.

Remark 4.2. Equip S with the trivial G action. Let [G\S] be the corresponding
quotient stack. We have a smooth covering map g : S → [G\S] and a structure map
π : [G\S]. QCohG(S) is just the category of quasicoherent sheaves on [G\S]. The
forgetful functor F is the pullback g∗. The right adjoint H is just the pushforward
g∗. Taking invariants corresponds to applying the pushforward π∗.

Since the cotangent complex of [G\S] is given by π∗Ω
1
G/S[1], it is not surpris-

ing that the Hoschild cohomology of Lie(G)∨ appears as an obstruction to lifting
problems in [Con14, B.2].

We would like to concretely compute the Hoschild cohomology of a sheaf. This
works especially well when G is relatively affine over S, let us restrict to this
case. Since everything is Zariski local on the target, we might as well assume that
S is affine, say S = SpecA. Notice that taking invariants can be expressed as
Inv(−) = HomQCohG(S)(OS,−), where OS is equipped with the trivial G-action.
Here the right-hand side HomQCohG(S)(OS,−) is naturally a A-module, so it is
indeed a quasicoherent sheaf on S. We will imitate the computation of abstract
group cohomology.

Since F reflects isomorphisms, we can use the monad coming from the adjunc-
tion (F,H) in order to obtain a Bar resolution of OS

... −→ O⊕3G −→ O
⊕2
G −→ OG −→ OS

(We are ommiting the pushforward symbols because everything is affine, so
pushing forward is just viewing everything as A-modules). Let F ∈ QCohG(S).
Applying HomQCohG(S)(−,F) we obtain a complex of A-modules

Inv(F) −→ C0(G,F) −→ C1(G,F) −→ ...

Here Cn(G,F) = HomSet(G(S)n, F ) (the reasoning is the same as for group
cohomology, just look at sections in each open and use the actions we defined).
The description of the differential d is the same as for abstract group cohomology.
We claim that the cohomology of the complex

C0(G,F) −→ C1(G,F) −→ C2(G,F)...
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computes RiInv(F). This follows if we can show that O⊕nG are projective objects in
QCohG(S). But this is clear, because we have seen that HomQCohG(S)(O⊕nG ,−) =
HomSet(G(S)n,−) and the latter functor is clearly exact.
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