Homework Solutions

Problem 5.1.2

An ostrich runs with velocity $20 \mathrm{~km} / \mathrm{h}$ for 2 minutes (min), $12 \mathrm{~km} / \mathrm{h}$ for 3 min , and $40 \mathrm{~km} / \mathrm{h}$ for another minute. Compute the total distance traveled and indicate with a graph how this quantity can be interpreted as an area.

Solution. The total distance traveled by the ostrich is

$$
\left(\frac{20}{60}\right)(2)+\left(\frac{12}{60}\right)(3)+\left(\frac{40}{60}\right)(1)=\frac{2}{3}+\frac{3}{5}+\frac{2}{3}=\frac{29}{15} \mathrm{~km}
$$

This distance is the area under the graph below which shows the ostrich's velocity as a function of time.

Problem 5.1.5

Compute R_{5} and L_{5} over $[0,1]$ using the following values:

x	0	0.2	0.4	0.6	0.8	1
$\mathrm{f}(\mathrm{x})$	50	48	46	44	42	40

SOlution. We have $\Delta x=\frac{1-0}{5}=0.2$. Hence we have

$$
\mathrm{L}_{5}=0.2(50+48+46+44+42)=0.2(230)=46
$$

and

$$
R_{5}=0.2(48+46+44+42+40)=0.2(220)=44
$$

Problem 5.1.42

Use linearity and formulas (3)-(5) to rewrite and evaluate the sum

$$
\sum_{m=1}^{20}\left(5+\frac{3 m}{2}\right)^{2}
$$

SOLUTION.

$$
\begin{aligned}
\sum_{m=1}^{20}\left(5+\frac{3 m}{2}\right)^{2} & =\sum_{m=1}^{20}\left(25+15 m+\frac{9}{4} m^{2}\right) \\
& =25 \sum_{m=1}^{20} 1+15 \sum_{m=1}^{20} m+\frac{9}{4} \sum_{m=1}^{20} m^{2} \\
& =25\left(20+15\left(\frac{20^{2}}{2}+\frac{20}{2}\right)+\frac{9}{4}\left(\frac{20^{3}}{3}+\frac{20^{2}}{2}+\frac{20}{6}\right)\right. \\
& =10107.5
\end{aligned}
$$

Problem 5.1.86

Prove that for any function f on $[\mathrm{a}, \mathrm{b}$],

$$
R_{N}-L_{N}=\frac{b-a}{N}(f(b)-f(a))
$$

SOLUTION. Let $\Delta x=(b-a) / N$ and partition the interval $[a, b]$ into N equal-length subintervals with endpoints

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{N}=b
$$

We have $L_{N}=\Delta x \sum_{k=0}^{N-1} f\left(x_{k}\right)$ and $R_{N}=\Delta x \sum_{k=1}^{N} f\left(x_{k}\right)$, so

$$
\begin{aligned}
R_{N}-L_{N} & =\Delta x\left(\sum_{k=1}^{N} f\left(x_{k}\right)-\sum_{k=0}^{N-1} f\left(x_{k}\right)\right) \\
& =\Delta x\left(f\left(x_{N}\right)+\sum_{k=1}^{N} f\left(x_{k}\right)-\left(f\left(x_{0}\right)+\sum_{k=0}^{N-1} f\left(x_{k}\right)\right)\right) \\
& =\Delta x\left(f\left(x_{N}\right)-f\left(x_{0}\right)\right) \\
& =\frac{b-a}{N}(f(b)-f(a))
\end{aligned}
$$

Problem 5.1.88

Use [the previous problem] to show that if f is positive and monotonic, then the area A under its graph over $[\mathrm{a}, \mathrm{b}]$ satisfies

$$
\left|R_{N}-A\right| \leq \frac{b-a}{N}|f(b)-f(a)|
$$

Solution. Suppose f is positive and increasing. Then R_{N} is an over-approximation of the area under the graph of f, and L_{N} is an under-approximation. That is, we have

$$
\mathrm{L}_{\mathrm{N}} \leq A \leq \mathrm{R}_{\mathrm{N}}
$$

Subtracting R_{N} from all three parts of that inequality yields

$$
L_{N}-R_{N} \leq A-R_{N} \leq 0
$$

and negating all three parts gives

$$
0 \leq R_{N}-A \leq R_{N}-L_{N}
$$

From the previous problem we have

$$
0 \leq R_{N}-A \leq \frac{b-a}{N}(f(b)-f(a))
$$

and taking absolute values gives the desired result.

$$
\left|R_{N}-A\right| \leq \frac{b-a}{N}|(f(b)-f(a))|
$$

(Since $R_{N}-A$ and $f(b)-f(a)$ are positive, they are equal to their own absolute values.) The case in which f is decreasing is similar.

Problem 5.2.7

Draw a graph of the signed area represented by the integral and compute it using geometry:

$$
\int_{0}^{5} \sqrt{25-x^{2}} d x
$$

SOLUTION. The region below $y=\sqrt{25-x^{2}}$ over $[0,5]$ is a quarter of the circle of radius 5 centered at the origin:

Hence $\int_{0}^{5} \sqrt{25-x^{2}} \mathrm{~d} x=\frac{1}{4} \pi(5)^{2}=\frac{25 \pi}{4}$.

Problem 5.2.14

Let $\mathrm{f}(\mathrm{x})$ figure shown in the figure below.

Compute (a) $\int_{1}^{4} f(x) d x \quad$ (b) $\int_{1}^{6}|f(x)| d x$
Solution. (a) The region between the graph of f and x-axis consists of a quarter of a circle of radius 1 and a quarter of a circle of radius 2 . Remembering that the definite integral computes signed area, we have

$$
\int_{1}^{4} f(x) d x=\frac{1}{4} \pi(2)^{2}-\frac{1}{4} \pi(1)^{2}=\frac{3}{4} \pi .
$$

(b) For this integral, we compute the unsigned area between the graph of f and the x-axis, which consists of a quarter circle or radius 1 and a semicircles of radius 2 .

$$
\int_{1}^{6} f(x) d x=\frac{1}{4} \pi(1)^{2}+\frac{1}{2} \pi(2)^{2}=\frac{9}{4} \pi .
$$

Problem 5.2.30

Determine the sign of the integral without calculating it. Draw a graph if necessary. $\int_{-2}^{2} x^{3} d x$
SOlUTION. By symmetry, the positive area from the interval $[0,1]$ is cancelled by the negative area from $[-1,0]$. With the interval $[-2,-1]$ contributing more negative area, the definite integral must be negative.

Problem 5.2.74

Calculate the integral: $\int_{0}^{2}\left|x^{2}-1\right| d x$.

SOLUTION. Since $x^{2}-1$ is negative on $[0,1]$ and positive on $[1,2]$, we have

$$
\left|x^{2}-1\right|= \begin{cases}-\left(x^{2}-1\right) & 0 \leq x \leq 1 \\ x^{2}-1 & 1 \leq x 2\end{cases}
$$

Hence

$$
\begin{aligned}
\int_{0}^{2}\left|x^{2}-1\right| d x & =\int_{0}^{1}\left(1-x^{2}\right) d x+\int_{1}^{2}\left(x^{2}-1\right) d x \\
& =\left[x-\frac{1}{3} x^{3}\right]_{x=0}^{1}+\left[\frac{1}{3} x^{3}-x\right]_{x=1}^{2} \\
& =2
\end{aligned}
$$

Problem 5.2.78

Prove that $0.277 \leq \int_{\pi / 8}^{\pi / 4} \cos x d x \leq 0.363$.

SOLUTION. $\cos x$ is decreasing on the interval $[\pi / 8, \pi / 4]$. Hence, for $\pi / 8 \leq x \leq \pi / 4$,

$$
\cos (\pi / 4) \leq \cos x \leq \cos (\pi / 8)
$$

Since $\cos (\pi / 4)=\sqrt{2} / 2$,

$$
0.277 \leq \frac{\pi}{8} \cdot \frac{\sqrt{2}}{2}=\int_{\pi / 8}^{\pi / 4} \frac{\sqrt{2}}{2} d x \leq \int_{\pi / 8}^{\pi / 4} \cos x d x
$$

Since $\cos (\pi / 8) \leq 0.924$,

$$
\int_{\pi / 8}^{\pi / 4} \cos x d x \leq \int_{\pi / 8}^{\pi / 4} 0.924 d x=\frac{\pi}{8}(0.924) \leq 0.363
$$

Therefore, $0.277 \leq \int_{\pi / 8}^{\pi_{4}} \cos x \leq 0.363$.

Problem 5.2.82 State whether true or false. If false, sketch the graph of a counterexample.
(a) If $f(x)>0$, then $\int_{a}^{b} f(x) d x>0$.
(b) If $\int_{a}^{b} f(x) d x>0$, then $f(x)>0$.

Solution.
(a) This is true in the case that $b>a$. If $a>b$, then $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$ and the integral is negative.
(b) It is false that if $\int_{a}^{b} f(x) d x>0$, then $f(x)>0$ for $x \in[a, b]$. A counterexample is $f(x)=3 x+4$ with $a=-2$ and $b=1$. We see that $\int_{-2}^{1}(3 x+4) d x=7.5>0$, yet $f(-2)=-2<0$. Here is the graph.

