HOMEWORK SOLUTIONS MATH 1910

Sections 8.7, 8.8, 8.9 Fall 2016
Problem 8.7.4
Determine whether jg (372% converges by computing

i [0
R3 o (3—x)3/2

SOLUTION. Choose u = 3 —x, then du = — dx. We get

J dx B _J’ du 2 LC= 2 e
B—x)3/2 Ju¥2  Ju V3 —x
Thus,
I JR dx . 2 ‘R——i—k I 2
R3- 0 B—x)32 ror-VB_xlo V3 Ro3-V3-R
Thus, the integral diverges. 8.7.4
Problem 8.7.28

Determine whether the improper integral converges and, if so, evaluate it:

J’6 x dx
3 VX — 3
SOLUTION. Note that lim,_,3+ \/% = 00, SO
J’6 x dx . J'6 x dx
= lim
3 Vx—3 R3TJrv/x—3

Choose u = x — 3, so du = dx, and

J \/X% = J u\%3 du = J(u1/2+3u—1/z) du — §u3/2+6u1/2+C _ %(X_3)3/2+6(X—3)1/2—|—C
So, ] )
xdx xdx . 2 3/2 L
J'3 X*3_Rli*r?+J'R X—?)_Rli»r?*(S(X 377 +6(x—3) )‘R
2 2
= Rlir? (§(3)3/2 +6(3)1/% — g(R —3)3/2 _6(R—3)1/2) =2(3)"/2 +6(3)/2+0+0 =83
33+
So the integral converges to 8v/3. -8.7.28



Problem 8.7.57

Show that 0 < e X’ < e *forx > 1. Use the Comparison Test to show that fgo e dx converges.

SOLUTION. Forx > 1,x% > x. Thus, since e > 1, we have 0 < e’ < e *forx > 1. Then, we
find that

o R R
e *dx = lim e Xdx= lim —e ¥ =e¢ '— lim —e R=¢"'
1 R—oo 1 R—oo 1 R—oo

So f?o e ™ dx converges. So, by the comparison test, floo e dx converges.

—X

Now, the function f(x) = e * is continuous on [0, 1], so it is integrable on [0, 1], so | (]) e dx

is finite. Thus, rewriting
%) 5 1 R o 5
J e dx = J e dx+ J e dx
0 0 1

we find that the right hand side is a sum of two finite terms, so the whole thing is finite. Thus

Io e’ dx converges. 8.7.57

Problem 8.7.82 Find the volume of the solid obtained by rotating the region below the graph of
y = e~ about the x-axis for 0 < x < oo.

SOLUTION. Using the disk method, the volume is given by

V:J (e )2 dx:ﬂJ' e 2% dx
0 0

First, compute the volume over a finite interval:

R R
2% 3y — T -2x| _ T 2R 1y _ T -2R
ﬂJoe dx = > e , > (e 1) 2(1 e M)
Thus,
R
T Xy — i N1 2Ry T T
V= fim | e ax= fim 3007 = 30-0)=3
8.7.82
Problem 8.7.84

The solid S obtained by rotating the region below the graph of y = x~ ' about the x-axis for 1 < x < co
is called Gabriel’s Horn.

(a) Use the Disk Method to compute the volume of S. Note that the volume is finite even though S is
an infinite region.

(b) It can be shown that the surface area of S is

A:ZT(J x "1 +x4dx
1

Show that A is infinite.



SOLUTION. (a) The height h(x) of a disk, for T < x < oo, is given by h(x) = x~ 1, so the
volume of the region is

o0 R R
V=n| x?dx=mn lim x 2 dx = —7 lim x~!
1 R— oo 1 R— oo 1

=—mnlim(R'"—1)=n
R—o0

(b) For x > 1, we have

e E T
x W1 4x = XX ==

T+ x4 Xt X2
= 2 —_— = — =X
x3 x3 x3

Since [7°x~! dx diverges, so must A, by the Comparison Test.

Problem 8.7.93

Let |, = fgo x"e % dx, where n > 1 is an integer and o« > 0. Prove that

n
Jn = a]n—l
and Jo = 1/o. Use this to compute J4. Show that ], =n!/o™1.

SOLUTION. Using integration by parts, with u = x™, dv = e **dx, we have du = nx™'dx

andv=—Lle ™% s0

_ 1 _ P
Jx“e X dx = ——x"e X% 4 n/a | XM Te ¥ dx
o

Thus,
R (o]
o + n/ch XM Te T dx

e 1
Tn :J x"e ¥ dx = lim ——x"e X~
0

0 R—o0 &

1
— lim —R"e R yo4
R—oo X 0.4

To evaluate the limit, rewrite limg_, o %R“e*R“ = limg_,00 (;TRRYL, which is of the indetermi-
nate form —oo/00, so we can apply L'Hopital’s rule. In fact, we will have to apply L'Hopital’s
rule repeatedly:

i —R™ i —nR™! . —n(n—1)R"2
im =lim —— =limryoo————— = ...
Roo oxeR Roo o2eRx —0 o3 eRx

—nn—"1)(n-—2)...(2)(1)

‘xn—o—]eRoc

= umR—»oo =0

So In = %]nfl-



Now,

0o R | R
Jo :J e **dx = lim J e *“dx= lim —e %
0 R—oo 0 R—oo & 0
—Rx 1 1
= lim +—=0+—-=
R— oo x x X

—e

T
o
So 1

J1= &Io =1/oc

o= 2 =2/
J3 = %]2 =6/’
4

= —J3 =24/
Ja=1Ts /o
Now, we can prove by induction that J,, = n!/a™*'. First note that forn =0, J,, = Jo = 1/a =
0!/a®*1, as needed. (It is a convention that 0! = 1.)

Now, suppose, for n > 1, that J,_1 = (n —1)!/«™. Then

o= ot = nl(n— D/ = /e

Problem 8.8.6

Find a constant C such that p is a probability density function on the given interval, and compute the
probability indicated:

—x

p(x) =Ce e ® " on (—oo,00); P(—4 < X < 4)

SOLUTION. For any value of C, p(x) will be continuous; and as long as C > 0, p(x) > 0 for all
x. So we need to find a nonnegative C such that J"iooo p(x) dx =1.

Well, choosing u = —e™*, we get du = e~ *dx, so
Jp(x) dx = J Ce e ®  dx= JCe“ du=Ce ¢ +K

for a constant K.

Now,

1= Joo p(x) dx = J:op(x) dx+pr(x) dx = lim Jop(x) dx + lim JRp(x) dx

. 727)( 0 . 7277( R 720 . 76712 . 72712 720
= lim Ce ‘ + lim Ce ’ = Ce — lim Ce + lim Ce — Ce
R——o0 R R—oo 0 R——oc0 R—oo



=0+C=C

x

SoC=1,and p(x) = e Xe¢ .

[NOTE: You MUST split this integral. See the definition in section 8.7, and consider Exercise
8.7.50.]

And

8.8.6
Problem 8.8.8

12
7T x2+1

Show that the density function p(x) =

on [0, 00) has infinite mean.

SOLUTION. Using the substitution u = x* + 1, we find that the mean of this density function is
given by
oo R
. 1 2x . 2 R
= [, w0 an = fim | e = fim Sini ] =0

So this integral diverges, so this density function has infinite mean. 8.8.8

Problem 8.8.22

According to Maxwell’s Distribution Law, in a gas of molecular mass m, the speed v of a molecule in
a gas at temperature T (kelvins) is a random variable with density

m —mv?
pW) =dn(z <) vie ™ /B (v > 0)

where k is Boltzmann'’s constant. Show that the average molecular speed is equal to (8kT/mtm)'/2.

SOLUTION. We are asked to find the average speed, so we are taking the mean of this density
function:

o= JO VP(V) dv :47_[(%)3/2 JO v3efmv2/(2kT) dv

Let o = —m/(2kT). We'll compute the indefinite integral

2
Jv3e“v dv

To do this, we use integration by parts, with u = v?, dh = ve®™’. Then du = 2v dv and
h= ;—“eo“’z, and
Jv3e°“’2dv = vae"“’z 1 JZV@"“’2 dv
20 20



To compute the latter integral, choose u = av?, then du = 2avdv, so

1 1 1
EJ'Z\)e“VZ dv = EJ‘eu du= ﬁeo&vz —C

So :
JVSethZ dv — 27\)Zeocv ﬁecxvz +C
Thus
> m 2 [T 5 w2 2KT)
u= Jo vp(v) dv :47t(m)3/ L Vviemvi/I dv
m 1 2 IR
—4 3/2 li 2 av oy
m anT) RE)I;O(Z(XV € 2a2 ) 0

Mz, RIx(p2
_47Tzcx(27rkT) (lim [e™ %(R™ —1/0)] +1/at)

Recall that o« = —m/(2kT) < 0, so we can use L'Hopital’s rule twice to evaluate the limit:

 Rlep L R—1/x 2R L -1
dim €™ S(RT—1/0) = lim = e = M e ®a — i, e O
so 1 1 1
I BN Yoy RIx(p2 g M 32 L
w=dna G (im le” S(RE =1/l +1/a) = dng 2 (55777 ()
S, lm o5, 2kl m fm
=2 g = ) (ad e
_ AT /i_wy
T om V2nkT TV mm
8.8.22
Problem 8.8.28

Calculate pand o, where o is the standard deviation, defined by

o? = Jm (x — W2p(x) dx

—00

Herep(x) = %e*"/r on [0, 00), where v > 0.

SOLUTION.
oo R ]
o :J xp(x) dx = lim J —xe /T dx
0 R—o0 0 T
. . . . o 1 = o o —
Using integration by parts, with u = x and dv = Le /" dx, we get du = dx and v = —e /",
SO



R R R
u= lim J —xe T dx = — lim xe ™"| + lim J e /T dx

R—ooo Jo T R—o0 0 R—o0 Jo
= — lim Re ™" — lim re ™" =— lim — lim re R/ 41
R—o0 R—oo R—oo eR/T R—oo

We can solve the first limit with L’'Hopital’s rule:

R 1
—lim — — limre ¥ +r=—1lim ——— 4+ 0+1r=04+r=7
R—oo eR/T R500 R—co T 1eR/T
Sopu=r
Now,
oo ] o0
o’ :J —(x—1)%e " dx = fJ‘ (x2e™/T — 2rxe /" 4+ 12e /T )dx
o T T Jo
‘I o0 o0 o0
:fJ xze_x/rdx—ZJ xe_"/rdx—f—rJ e */Tdx
T Jo 0 0

Now, the third integral can be rewritten

T‘J e”‘/rdx:rzj px)dx =r*(1) =12
0 0

because p(x) is a density function.

The second integral can be rewritten

—ZJ xe X Tdx = —2rp = —2r2
0

The first integral can be solved with integration by parts, using u = x* and dv = e */"dx, so
du = 2xdx and v = —re /. Then

lj x?e ™/ Tdx = 1 lim x%(—r)e /"

R ][
+ - J 2rxe X/ Tdx
T Jo T R—oo o T

0
1 RZ(—1)

= — lim
T Rooo e X/T

+ 2rp

The first limit is 0, by two applications of L’'Hopital’s rule, so we get

_ RZ(—7)
Iim ———

| 2
- dim —— +2ru =2r(r) =2r

Putting these together, we find that 02 = 2r2 — 212 + 12 =12, s0 0 = . 8.8.28
Problem 8.9.2

Find My and T4 for fg Vxdx



SOLUTION. Ax =(4—0)/4=1,s0x; =ifor0 <i<4

Thus
My —AX(\/XO + 1Ax+ \/X] + le—i— \/xz + 1Ax—i— \/X3 + le)
2 2 2 2
= V1/24/3/2+/5/2 +\/7/2 ~ 5.38382
And :
Ty = EAx(\foJr 2VT+2V2 4+ 2V3 4+ V4) ~ 5.14626
8.9.2
Problem 8.9.19
Find Sg given by Simpson’s Rule for [ ? Inxdx
SOLUTION. Ax =(4—1)/8 =3/8, so
1,3 3 3 3 3
Sg = g(g)(lnl +4In(1+ g) +2In(1 +2(§)) +41In(1 +3(§)) +..+4In(1 +7(§)) +1n4)
~ 2.54499

8.9.19

Problem 8.9.52

Let | = [ e dx and Jn = ION e dx. Although e has no elementary antiderivative, it is
known that ] = \/7t/2. Let Ty be the Nth trapezoidal approximation to Jn. Calculate T4 and show that
T4 approximates | to three decimal places.

SOLUTION. Ty is the 4th trapezoidal approximation to | g e, 50 Ax = (4—0)/4 =1, and we
getx; =ifor0<i<4, 50

1
T4 = EAx(e*O2 12V 4262 127 ¢ 6*42)

(142" +2e 427 +e71°) ~ .8863185

N —

Then the error of the approximation of ] by T4 is given by

] — Tul = [v/7/2 — .8863185| ~ |.8862269 — 8863185 < 103,
as desired.
Problem 8.9.64

Calculate My and Sq¢ for the integral f:) V1 —x2dx, whose value we know to be 7/4 (one-quarter of
the area of the unit circle.

(a) We usually expect S to be more accurate than M. Which of My and Sy is more accurate in
this case?



(b) How do you explain the result of part (a)?

SOLUTION. Ax = (1—-0)/10=.1,and x; = (.1)ifor 0 <1 <10, so

Mio =.1(v/1—.052 + /1 —.152 4+ ...+ /1 — .852 + /1 — .952) ~ .788103;

S0 = %(.1)(\/1 —02+4/1—1242/1— 224+ .. 421 — 8 +4/1 =92+ VT 1)

~ .781752

(a) The approximation error for M is |rt/4 — .788103| = .0027. The approximation error for
Sqois|m/4 —.781752| =~ .00365

So My is actually closer to f; v 1 —x2dx in this case.

(b) Recall that our error bounds for My and Sn require that |f”(x)| and I£(4)(x)], respec-
tively, to be continuous and bounded on the interval [a, b] (here [a,b] = [0, 1] and f(x) =

V1 —x2).
Computing the first four derivatives of f, we get
f/(x) = —x(1—x%)"/?

f//(x) — _(1 _ XZ)_3/2
3 (x) = —3x(1 —x%)75/2
) (x) = =3(x* + 1)(1 —x?)=7/2)

Now, we see that as x — 17, |f”(x)| and [f) (x)] go to oo, so our theorems about error
bounds do not apply. However, we can see that as x — 17, [f(*)(x)| goes to co much
faster than [f”(x)|, so the hypotheses on our error bound theorems are, in some sense,
more violated in the case of Sy than in the case of My, here. Thus, it is not surprising
that M would provide a better approximation.



