
HOMEWORK SOLUTIONS MATH 1910
Sections 8.7, 8.8, 8.9 Fall 2016

Problem 8.7.4

Determine whether
∫3
0

dx
(3−x)3/2

converges by computing

lim
R→3−

∫R
0

dx

(3− x)3/2

SOLUTION. Choose u = 3− x, then du = − dx. We get∫
dx

(3− x)3/2
= −

∫
du

u3/2
=

2√
u
+ C =

2√
3− x

+ C

Thus,

lim
R→3−

∫R
0

dx

(3− x)3/2
= lim
R→3−

2√
3− x

∣∣∣R
0
= −

2√
3
+ lim
R→3−

2√
3− R

= ∞
Thus, the integral diverges. 8.7.4

Problem 8.7.28

Determine whether the improper integral converges and, if so, evaluate it:

∫6
3

x dx√
x− 3

SOLUTION. Note that limx→3+ x√
x−3

= ∞, so∫6
3

x dx√
x− 3

= lim
R→3+

∫6
R

x dx√
x− 3

Choose u = x− 3, so du = dx, and∫
x dx√
x− 3

=

∫
u+ 3√
u
du =

∫
(u1/2+3u−1/2) du =

2

3
u3/2+6u1/2+C =

2

3
(x−3)3/2+6(x−3)1/2+C

So, ∫6
3

x dx√
x− 3

= lim
R→3+

∫6
R

x dx√
x− 3

= lim
R→3+(

2

3
(x− 3)3/2 + 6(x− 3)1/2)

∣∣∣6
R

= lim
R→3+(

2

3
(3)3/2 + 6(3)1/2 −

2

3
(R− 3)3/2 − 6(R− 3)1/2) = 2(3)1/2 + 6(3)1/2 + 0+ 0 = 8

√
3

So the integral converges to 8
√
3. 8.7.28
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Problem 8.7.57

Show that 0 ≤ e−x2 ≤ e−x for x ≥ 1. Use the Comparison Test to show that
∫∞
0
e−x

2

dx converges.

SOLUTION. For x ≥ 1, x2 ≥ x. Thus, since e ≥ 1, we have 0 ≤ e−x2 ≤ e−x for x ≥ 1. Then, we
find that ∫∞

1

e−x dx = lim
R→∞

∫R
1

e−x dx = lim
R→∞−e−x

∣∣∣R
1
= e−1 − lim

R→∞−e−R = e−1

So
∫∞
1
e−x dx converges. So, by the comparison test,

∫∞
1
e−x

2

dx converges.

Now, the function f(x) = e−x
2

is continuous on [0, 1], so it is integrable on [0, 1], so
∫1
0
e−x

2

dx
is finite. Thus, rewriting ∫∞

0

e−x
2

dx =

∫1
0

e−x
2

dx+

∫∞
1

e−x
2

dx

we find that the right hand side is a sum of two finite terms, so the whole thing is finite. Thus∫∞
0
e−x

2

dx converges. 8.7.57

Problem 8.7.82 Find the volume of the solid obtained by rotating the region below the graph of
y = e−x about the x-axis for 0 ≤ x <∞.

SOLUTION. Using the disk method, the volume is given by

V =

∫∞
0

π(e−x)2 dx = π

∫∞
0

e−2x dx

First, compute the volume over a finite interval:

π

∫R
0

e−2x dx =
−π

2
e−2x

∣∣∣∣R
0

=
−π

2
(e−2R − 1) =

π

2
(1− e−2R)

Thus,

V = lim
R→∞π

∫R
0

e−2x dx = lim
R→∞

π

2
(1− e−2R) =

π

2
(1− 0) =

π

2

8.7.82

Problem 8.7.84

The solid S obtained by rotating the region below the graph of y = x−1 about the x-axis for 1 ≤ x <∞
is called Gabriel’s Horn.

(a) Use the Disk Method to compute the volume of S. Note that the volume is finite even though S is
an infinite region.

(b) It can be shown that the surface area of S is

A = 2π

∫∞
1

x−1
√
1+ x−4 dx

Show that A is infinite.
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SOLUTION. (a) The height h(x) of a disk, for 1 ≤ x < ∞, is given by h(x) = x−1, so the
volume of the region is

V = π

∫∞
1

x−2 dx = π lim
R→∞

∫R
1

x−2 dx = −π lim
R→∞ x−1

∣∣∣R
1

= −π lim
R→∞(R−1 − 1) = π

(b) For x > 1, we have

x−1
√
1+ x−4 =

√
1+ 1

x4

x
=

√
x4+1
x4

x

=

√
1+ x4

x3
≥
√
x4

x3
=
x2

x3
= x−1.

Since
∫∞
1
x−1 dx diverges, so must A, by the Comparison Test.

8.7.84

Problem 8.7.93

Let Jn =
∫∞
0
xne−xα dx, where n ≥ 1 is an integer and α > 0. Prove that

Jn =
n

α
Jn−1

and J0 = 1/α. Use this to compute J4. Show that Jn = n!/αn+1.

SOLUTION. Using integration by parts, with u = xn, dv = e−xαdx, we have du = nxn−1dx
and v = − 1

α
e−xα, so ∫

xne−xα dx = −
1

α
xne−xα + n/α

∫
xn−1e−xα dx

Thus,

Jn =

∫∞
0

xne−xα dx = lim
R→∞−

1

α
xne−xα

∣∣∣R
0
+ n/α

∫∞
0

xn−1e−xα dx

= lim
R→∞

−1

α
Rne−Rα + 0+

n

α
Jn−1

To evaluate the limit, rewrite limR→∞ −1
α
Rne−Rα = limR→∞ −Rn

αeRα
, which is of the indetermi-

nate form −∞/∞, so we can apply L’Hopital’s rule. In fact, we will have to apply L’Hopital’s
rule repeatedly:

lim
R→∞

−Rn

αeRα
= lim
R→∞

−nRn−1

α2eRα
= limR→∞−n(n− 1)Rn−2

α3eRα
= ...

= limR→∞−n(n− 1)(n− 2)...(2)(1)

αn+1eRα
= 0

So Jn = n
α
Jn−1.
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Now,

J0 =

∫∞
0

e−xα dx = lim
R→∞

∫R
0

e−xα dx = lim
R→∞

−1

α
e−xα

∣∣∣R
0

= lim
R→∞

−e−Rα

α
+
1

α
= 0+

1

α
=
1

α

So
J1 =

1

α
J0 = 1/α

2

,

J2 =
2

α
J1 = 2/α

3

,

J3 =
3

α
J2 = 6/α

4

J4 =
4

α
J3 = 24/α

5

Now, we can prove by induction that Jn = n!/αn+1. First note that for n = 0, Jn = J0 = 1/α =
0!/α0+1, as needed. (It is a convention that 0! = 1.)

Now, suppose, for n > 1, that Jn−1 = (n− 1)!/αn. Then

Jn =
n

α
Jn−1 = n((n− 1)!)/αn+1 = n!/αn+1

8.7.93

Problem 8.8.6

Find a constant C such that p is a probability density function on the given interval, and compute the
probability indicated:

p(x) = Ce−xe−e
−x

on (−∞,∞); P(−4 ≤ X ≤ 4)

SOLUTION. For any value of C, p(x) will be continuous; and as long as C ≥ 0, p(x) ≥ 0 for all
x. So we need to find a nonnegative C such that

∫∞
−∞ p(x) dx = 1.

Well, choosing u = −e−x, we get du = e−xdx, so∫
p(x) dx =

∫
Ce−xe−e

−x

dx =

∫
Ceu du = Ce−e

−x

+ K

for a constant K.

Now,

1 =

∫∞
−∞ p(x) dx =

∫0
−∞ p(x) dx+

∫∞
0

p(x) dx = lim
R→−∞

∫0
R

p(x) dx+ lim
R→∞

∫R
0

p(x) dx

= lim
R→−∞Ce−e

−x
∣∣∣0
R
+ lim
R→∞Ce−e

−x
∣∣∣R
0
= Ce−e

0

− lim
R→−∞Ce−e

−R

+ lim
R→∞Ce−e

−R

− Ce−e
0
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= 0+ C = C

So C = 1, and p(x) = e−xe−e
−x

.

[NOTE: You MUST split this integral. See the definition in section 8.7, and consider Exercise
8.7.50.]

And

P(−4 ≤ X ≤ 4) =
∫4
−4

p(x) dx = e−e
−x
∣∣∣4
−4

= e−e
−4

− e−e
4

≈ 0.982

8.8.6

Problem 8.8.8

Show that the density function p(x) = 1
π

2
x2+1

on [0,∞) has infinite mean.

SOLUTION. Using the substitution u = x2+ 1, we find that the mean of this density function is
given by

µ =

∫∞
0

xp(x) dx = lim
R→∞

∫R
0

1

π

2x

x2 + 1
dx = lim

R→∞
1

π
ln |x2 + 1|

∣∣∣R
0
= ∞

So this integral diverges, so this density function has infinite mean. 8.8.8

Problem 8.8.22

According to Maxwell’s Distribution Law, in a gas of molecular massm, the speed v of a molecule in
a gas at temperature T (kelvins) is a random variable with density

p(v) = 4π(
m

2πkT
)3/2v2e−mv

2/(2kT) (v ≥ 0)

where k is Boltzmann’s constant. Show that the average molecular speed is equal to (8kT/πm)1/2.

SOLUTION. We are asked to find the average speed, so we are taking the mean of this density
function:

µ =

∫∞
0

vp(v) dv = 4π(
m

2πkT
)3/2

∫∞
0

v3e−mv
2/(2kT) dv

Let α = −m/(2kT). We’ll compute the indefinite integral∫
v3eαv

2

dv

To do this, we use integration by parts, with u = v2, dh = veαv
2

. Then du = 2v dv and
h = 1

2α
eαv

2

, and ∫
v3eαv

2

dv =
1

2α
v2eαv

2

−
1

2α

∫
2veαv

2

dv
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To compute the latter integral, choose u = αv2, then du = 2αvdv, so

1

2α

∫
2veαv

2

dv =
1

2α2

∫
eu du =

1

2α2
eαv

2

− C

So ∫
v3eαv

2

dv =
1

2α
v2eαv

2

−
1

2α2
eαv

2

+ C

Thus
µ =

∫∞
0

vp(v) dv = 4π(
m

2πkT
)3/2

∫∞
0

v3e−mv
2/(2kT) dv

= 4π(
m

2πkT
)3/2 lim

R→∞(
1

2α
v2eαv

2

−
1

2α2
eαv

2

)
∣∣∣R
0

= 4π
1

2α
(
m

2πkT
)3/2( lim

R→∞[eR
2α(R2 − 1/α)] + 1/α)

Recall that α = −m/(2kT) < 0, so we can use L’Hopital’s rule twice to evaluate the limit:

lim
R→∞ eR

2α(R2 − 1/α) = lim
R→∞

R2 − 1/α

e−R
2α

= lim
R→∞

2R

−2Rαe−R2α
= lim
R→∞

−1

αe−R
2α

= 0

So
µ = 4π

1

2α
(
m

2πkT
)3/2( lim

R→∞[eR
2α(R2 − 1/α)] + 1/α) = 4π

1

2α
(
m

2πkT
)3/2(

1

α
)

= 2π
1

α2
(
m

2πkT
)3/2 = 2π(

2kT

m
)2(

m

2πkT
)

√
m

2πkT

=
4kT

m

√
m

2πkT
=

√
8kT

πm

8.8.22

Problem 8.8.28

Calculate µ and σ, where σ is the standard deviation, defined by

σ2 =

∫∞
−∞(x− µ)2p(x) dx

Here p(x) = 1
r
e−x/r on [0,∞), where r > 0.

SOLUTION.

µ =

∫∞
0

xp(x) dx = lim
R→∞

∫R
0

1

r
xe−x/r dx

Using integration by parts, with u = x and dv = 1
r
e−x/r dx, we get du = dx and v = −e−x/r,

so
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µ = lim
R→∞

∫R
0

1

r
xe−x/r dx = − lim

R→∞ xe−x/r
∣∣∣R
0
+ lim
R→∞

∫R
0

e−x/r dx

= − lim
R→∞Re−R/r − lim

R→∞ re−x/r
∣∣∣R
0
= − lim

R→∞
R

eR/r
− lim
R→∞ re−R/r + r

We can solve the first limit with L’Hopital’s rule:

− lim
R→∞

R

eR/r
− lim
R→∞ re−R/r + r = − lim

R→∞
1

r−1eR/r
+ 0+ r = 0+ r = r

So µ = r

Now,

σ2 =

∫∞
0

1

r
(x− r)2e−x/r dx =

1

r

∫∞
0

(x2e−x/r − 2rxe−x/r + r2e−x/r)dx

=
1

r

∫∞
0

x2e−x/rdx− 2

∫∞
0

xe−x/rdx+ r

∫∞
0

e−x/rdx

Now, the third integral can be rewritten

r

∫∞
0

e−x/rdx = r2
∫∞
0

p(x)dx = r2(1) = r2

because p(x) is a density function.

The second integral can be rewritten

−2

∫∞
0

xe−x/rdx = −2rµ = −2r2

The first integral can be solved with integration by parts, using u = x2 and dv = e−x/rdx, so
du = 2xdx and v = −re−x/r. Then

1

r

∫∞
0

x2e−x/rdx =
1

r
lim
R→∞ x2(−r)e−x/r

∣∣∣R
0
+
1

r

∫∞
0

2rxe−x/rdx

=
1

r
lim
R→∞

R2(−r)

e−x/r
+ 2rµ

The first limit is 0, by two applications of L’Hopital’s rule, so we get

1

r
lim
R→∞

R2(−r)

e−x/r
+ 2rµ = 2r(r) = 2r2

Putting these together, we find that σ2 = 2r2 − 2r2 + r2 = r2, so σ = r. 8.8.28

Problem 8.9.2

FindM4 and T4 for
∫4
0

√
xdx
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SOLUTION. ∆x = (4− 0)/4 = 1, so xi = i for 0 ≤ i ≤ 4

Thus

M4 = ∆x(

√
x0 +

1

2
∆x+

√
x1 +

1

2
∆x+

√
x2 +

1

2
∆x+

√
x3 +

1

2
∆x)

=
√
1/2+

√
3/2+

√
5/2+

√
7/2 ≈ 5.38382

And
T4 =

1

2
∆x(
√
0+ 2

√
1+ 2

√
2+ 2

√
3+
√
4) ≈ 5.14626

8.9.2

Problem 8.9.19

Find S8 given by Simpson’s Rule for
∫4
1

ln xdx

SOLUTION. ∆x = (4− 1)/8 = 3/8, so

S8 =
1

3
(
3

8
)(ln 1+ 4 ln (1+

3

8
) + 2 ln (1+ 2(

3

8
)) + 4 ln (1+ 3(

3

8
)) + ...+ 4 ln (1+ 7(

3

8
)) + ln 4)

≈ 2.54499

8.9.19

Problem 8.9.52

Let J =
∫∞
0
e−x

2

dx and JN =
∫N
0
e−x

2

dx. Although e−x
2

has no elementary antiderivative, it is
known that J =

√
π/2. Let TN be theNth trapezoidal approximation to JN. Calculate T4 and show that

T4 approximates J to three decimal places.

SOLUTION. T4 is the 4th trapezoidal approximation to
∫4
0
e−x

2

, so ∆x = (4 − 0)/4 = 1, and we
get xi = i for 0 ≤ i ≤ 4, so

T4 =
1

2
∆x(e−0

2

+ 2e−1
2

+ 2e−2
2

+ 2e−3
2

+ e−4
2

)

=
1

2
(1+ 2e−1 + 2e−4 + 2e−9 + e−16) ≈ .8863185

Then the error of the approximation of J by T4 is given by

|J− T4| = |
√
π/2− .8863185| ≈ |.8862269− .8863185| < 10−3,

as desired. 8.9.52

Problem 8.9.64

Calculate M10 and S10 for the integral
∫1
0

√
1− x2dx, whose value we know to be π/4 (one-quarter of

the area of the unit circle.

(a) We usually expect SN to be more accurate than MN. Which of M10 and S10 is more accurate in
this case?
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(b) How do you explain the result of part (a)?

SOLUTION. ∆x = (1− 0)/10 = .1, and xi = (.1)i for 0 ≤ i ≤ 10, so

M10 = .1(
√
1− .052 +

√
1− .152 + ...+

√
1− .852 +

√
1− .952) ≈ .788103;

S10 =
1

3
(.1)(

√
1− 02 + 4

√
1− .12 + 2

√
1− .22 + ...+ 2

√
1− .82 + 4

√
1− .92 +

√
1− 1)

≈ .781752

(a) The approximation error forM10 is |π/4− .788103| ≈ .0027. The approximation error for
S10 is |π/4− .781752| ≈ .00365

SoM10 is actually closer to
∫1
0

√
1− x2dx in this case.

(b) Recall that our error bounds for MN and SN require that |f ′′(x)| and |f(4)(x)|, respec-
tively, to be continuous and bounded on the interval [a, b] (here [a, b] = [0, 1] and f(x) =√
1− x2).

Computing the first four derivatives of f, we get

f ′(x) = −x(1− x2)−1/2

f ′′(x) = −(1− x2)−3/2

f(3)(x) = −3x(1− x2)−5/2

f(4)(x) = −3(x2 + 1)(1− x2)(−7/2)

Now, we see that as x → 1−, |f ′′(x)| and |f(4)(x)| go to ∞, so our theorems about error
bounds do not apply. However, we can see that as x → 1−, |f(4)(x)| goes to ∞ much
faster than |f ′′(x)|, so the hypotheses on our error bound theorems are, in some sense,
more violated in the case of SN than in the case of MN, here. Thus, it is not surprising
thatMN would provide a better approximation.

8.9.64
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