Homework Solutions

Problem 8.7.4

Determine whether $\int_{0}^{3} \frac{\mathrm{dx}}{(3-x)^{3 / 2}}$ converges by computing

$$
\lim _{R \rightarrow 3^{-}} \int_{0}^{R} \frac{d x}{(3-x)^{3 / 2}}
$$

SOLUTION. Choose $u=3-x$, then $d u=-d x$. We get

$$
\int \frac{d x}{(3-x)^{3 / 2}}=-\int \frac{d u}{u^{3 / 2}}=\frac{2}{\sqrt{u}}+C=\frac{2}{\sqrt{3-x}}+C
$$

Thus,

$$
\lim _{R \rightarrow 3^{-}} \int_{0}^{R} \frac{d x}{(3-x)^{3 / 2}}=\left.\lim _{R \rightarrow 3^{-}} \frac{2}{\sqrt{3-x}}\right|_{0} ^{R}=-\frac{2}{\sqrt{3}}+\lim _{R \rightarrow 3^{-}} \frac{2}{\sqrt{3-R}}=\infty
$$

Thus, the integral diverges.

Problem 8.7.28

Determine whether the improper integral converges and, if so, evaluate it:

$$
\int_{3}^{6} \frac{x d x}{\sqrt{x-3}}
$$

SOLUTION. Note that $\lim _{x \rightarrow 3^{+}} \frac{x}{\sqrt{x-3}}=\infty$, so

$$
\int_{3}^{6} \frac{x d x}{\sqrt{x-3}}=\lim _{R \rightarrow 3^{+}} \int_{R}^{6} \frac{x d x}{\sqrt{x-3}}
$$

Choose $u=x-3$, so $d u=d x$, and
$\int \frac{x d x}{\sqrt{x-3}}=\int \frac{u+3}{\sqrt{u}} d u=\int\left(u^{1 / 2}+3 u^{-1 / 2}\right) d u=\frac{2}{3} u^{3 / 2}+6 u^{1 / 2}+C=\frac{2}{3}(x-3)^{3 / 2}+6(x-3)^{1 / 2}+C$

So,

$$
\begin{gathered}
\int_{3}^{6} \frac{x d x}{\sqrt{x-3}}=\lim _{R \rightarrow 3^{+}} \int_{R}^{6} \frac{x d x}{\sqrt{x-3}}=\left.\lim _{R \rightarrow 3^{+}}\left(\frac{2}{3}(x-3)^{3 / 2}+6(x-3)^{1 / 2}\right)\right|_{R} ^{6} \\
=\lim _{R \rightarrow 3^{+}}\left(\frac{2}{3}(3)^{3 / 2}+6(3)^{1 / 2}-\frac{2}{3}(R-3)^{3 / 2}-6(R-3)^{1 / 2}\right)=2(3)^{1 / 2}+6(3)^{1 / 2}+0+0=8 \sqrt{3}
\end{gathered}
$$

So the integral converges to $8 \sqrt{3}$.

Problem 8.7.57

Show that $0 \leq e^{-x^{2}} \leq e^{-x}$ for $x \geq 1$. Use the Comparison Test to show that $\int_{0}^{\infty} e^{-x^{2}} d x$ converges.
SOLUTION. For $x \geq 1, x^{2} \geq x$. Thus, since $e \geq 1$, we have $0 \leq e^{-x^{2}} \leq e^{-x}$ for $x \geq 1$. Then, we find that

$$
\int_{1}^{\infty} e^{-x} d x=\lim _{R \rightarrow \infty} \int_{1}^{R} e^{-x} d x=\lim _{R \rightarrow \infty}-\left.e^{-x}\right|_{1} ^{R}=e^{-1}-\lim _{R \rightarrow \infty}-e^{-R}=e^{-1}
$$

So $\int_{1}^{\infty} e^{-x} d x$ converges. So, by the comparison test, $\int_{1}^{\infty} e^{-x^{2}} d x$ converges.
Now, the function $f(x)=e^{-x^{2}}$ is continuous on $[0,1]$, so it is integrable on $[0,1]$, so $\int_{0}^{1} e^{-x^{2}} d x$ is finite. Thus, rewriting

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\int_{0}^{1} e^{-x^{2}} d x+\int_{1}^{\infty} e^{-x^{2}} d x
$$

we find that the right hand side is a sum of two finite terms, so the whole thing is finite. Thus $\int_{0}^{\infty} e^{-x^{2}} d x$ converges.

Problem 8.7.82 Find the volume of the solid obtained by rotating the region below the graph of $y=e^{-x}$ about the x-axis for $0 \leq x<\infty$.

SOLUTION. Using the disk method, the volume is given by

$$
\mathrm{V}=\int_{0}^{\infty} \pi\left(e^{-x}\right)^{2} \mathrm{dx}=\pi \int_{0}^{\infty} e^{-2 x} \mathrm{dx}
$$

First, compute the volume over a finite interval:

$$
\pi \int_{0}^{R} e^{-2 x} d x=\left.\frac{-\pi}{2} e^{-2 x}\right|_{0} ^{R}=\frac{-\pi}{2}\left(e^{-2 R}-1\right)=\frac{\pi}{2}\left(1-e^{-2 R}\right)
$$

Thus,

$$
V=\lim _{R \rightarrow \infty} \pi \int_{0}^{R} e^{-2 x} d x=\lim _{R \rightarrow \infty} \frac{\pi}{2}\left(1-e^{-2 R}\right)=\frac{\pi}{2}(1-0)=\frac{\pi}{2}
$$

Problem 8.7.84

The solid S obtained by rotating the region below the graph of $y=x^{-1}$ about the x-axis for $1 \leq x<\infty$ is called Gabriel's Horn.
(a) Use the Disk Method to compute the volume of S . Note that the volume is finite even though S is an infinite region.
(b) It can be shown that the surface area of S is

$$
A=2 \pi \int_{1}^{\infty} x^{-1} \sqrt{1+x^{-4}} d x
$$

Show that A is infinite.

SOLUTION. (a) The height $h(x)$ of a disk, for $1 \leq x<\infty$, is given by $h(x)=x^{-1}$, so the volume of the region is

$$
\begin{gathered}
V=\pi \int_{1}^{\infty} x^{-2} d x=\pi \lim _{R \rightarrow \infty} \int_{1}^{R} x^{-2} d x=-\left.\pi \lim _{R \rightarrow \infty} x^{-1}\right|_{1} ^{R} \\
=-\pi \lim _{R \rightarrow \infty}\left(R^{-1}-1\right)=\pi
\end{gathered}
$$

(b) For $x>1$, we have

$$
\begin{gathered}
x^{-1} \sqrt{1+x^{-4}}=\frac{\sqrt{1+\frac{1}{x^{4}}}}{x}=\frac{\sqrt{\frac{x^{4}+1}{x^{4}}}}{x} \\
\quad=\frac{\sqrt{1+x^{4}}}{x^{3}} \geq \frac{\sqrt{x^{4}}}{x^{3}}=\frac{x^{2}}{x^{3}}=x^{-1}
\end{gathered}
$$

Since $\int_{1}^{\infty} x^{-1} d x$ diverges, so must A, by the Comparison Test.

Problem 8.7.93

Let $\mathrm{J}_{\mathrm{n}}=\int_{0}^{\infty} x^{n} e^{-x \alpha} \mathrm{~d} x$, where $\mathrm{n} \geq 1$ is an integer and $\alpha>0$. Prove that

$$
J_{n}=\frac{n}{\alpha} J_{n-1}
$$

and $\mathrm{J}_{0}=1 / \alpha$. Use this to compute J_{4}. Show that $\mathrm{J}_{\mathrm{n}}=\mathrm{n}!/ \alpha^{\mathrm{n}+1}$.
SOLUTION. Using integration by parts, with $u=x^{n}, d v=e^{-x \alpha} d x$, we have $d u=n x^{n-1} d x$ and $v=-\frac{1}{\alpha} e^{-\chi \alpha}$, so

$$
\int x^{n} e^{-x \alpha} d x=-\frac{1}{\alpha} x^{n} e^{-x \alpha}+n / \alpha \int x^{n-1} e^{-x \alpha} d x
$$

Thus,

$$
\begin{gathered}
J_{n}=\int_{0}^{\infty} x^{n} e^{-x \alpha} d x=\lim _{R \rightarrow \infty}-\left.\frac{1}{\alpha} x^{n} e^{-x \alpha}\right|_{0} ^{R}+n / \alpha \int_{0}^{\infty} x^{n-1} e^{-x \alpha} d x \\
=\lim _{R \rightarrow \infty} \frac{-1}{\alpha} R^{n} e^{-R \alpha}+0+\frac{n}{\alpha} J_{n-1}
\end{gathered}
$$

To evaluate the limit, rewrite $\lim _{R \rightarrow \infty} \frac{-1}{\alpha} R^{n} e^{-R \alpha}=\lim _{R \rightarrow \infty} \frac{-R^{n}}{\alpha e^{R \alpha}}$, which is of the indeterminate form $-\infty / \infty$, so we can apply L'Hopital's rule. In fact, we will have to apply L'Hopital's rule repeatedly:

$$
\begin{gathered}
\lim _{R \rightarrow \infty} \frac{-R^{n}}{\alpha e^{R \alpha}}=\lim _{R \rightarrow \infty} \frac{-n R^{n-1}}{\alpha^{2} e^{R \alpha}}=\lim _{R \rightarrow \infty} \frac{-n(n-1) R^{n-2}}{\alpha^{3} e^{R \alpha}}=\ldots \\
=\lim _{R \rightarrow \infty} \frac{-n(n-1)(n-2) \ldots(2)(1)}{\alpha^{n+1} e^{R \alpha}}=0
\end{gathered}
$$

So $J_{n}=\frac{n}{\alpha} J_{n-1}$.

Now,

$$
\begin{gathered}
\mathrm{J}_{0}=\int_{0}^{\infty} e^{-x \alpha} d x=\lim _{R \rightarrow \infty} \int_{0}^{R} e^{-x \alpha} d x=\left.\lim _{R \rightarrow \infty} \frac{-1}{\alpha} e^{-x \alpha}\right|_{0} ^{R} \\
=\lim _{R \rightarrow \infty} \frac{-e^{-R \alpha}}{\alpha}+\frac{1}{\alpha}=0+\frac{1}{\alpha}=\frac{1}{\alpha}
\end{gathered}
$$

So

$$
\begin{aligned}
& \mathrm{J}_{1}=\frac{1}{\alpha} \mathrm{~J}_{0}=1 / \alpha^{2} \\
& \mathrm{~J}_{2}=\frac{2}{\alpha} \mathrm{~J}_{1}=2 / \alpha^{3} \\
& \mathrm{~J}_{3}=\frac{3}{\alpha} \mathrm{~J}_{2}=6 / \alpha^{4} \\
& \mathrm{~J}_{4}=\frac{4}{\alpha} \mathrm{~J}_{3}=24 / \alpha^{5}
\end{aligned}
$$

Now, we can prove by induction that $J_{n}=n!/ \alpha^{n+1}$. First note that for $n=0, J_{n}=J_{0}=1 / \alpha=$ $0!/ \alpha^{0+1}$, as needed. (It is a convention that $0!=1$.)

Now, suppose, for $n>1$, that $J_{n-1}=(n-1)!/ \alpha^{n}$. Then

$$
J_{n}=\frac{n}{\alpha} J_{n-1}=n((n-1)!) / \alpha^{n+1}=n!/ \alpha^{n+1}
$$

Problem 8.8.6

Find a constant C such that p is a probability density function on the given interval, and compute the probability indicated:
$p(x)=C e^{-x} e^{-e^{-x}}$ on $(-\infty, \infty) ; \mathrm{P}(-4 \leq X \leq 4)$

SOLUTION. For any value of $C, p(x)$ will be continuous; and as long as $C \geq 0, p(x) \geq 0$ for all x. So we need to find a nonnegative C such that $\int_{-\infty}^{\infty} p(x) d x=1$.
Well, choosing $u=-e^{-x}$, we get $d u=e^{-x} d x$, so

$$
\int p(x) d x=\int C e^{-x} e^{-e^{-x}} d x=\int C e^{u} d u=C e^{-e^{-x}}+K
$$

for a constant K .
Now,

$$
\begin{aligned}
& 1=\int_{-\infty}^{\infty} p(x) d x=\int_{-\infty}^{0} p(x) d x+\int_{0}^{\infty} p(x) d x=\lim _{R \rightarrow-\infty} \int_{R}^{0} p(x) d x+\lim _{R \rightarrow \infty} \int_{0}^{R} p(x) d x \\
= & \left.\lim _{R \rightarrow-\infty} C e^{-e^{-x}}\right|_{R} ^{0}+\left.\lim _{R \rightarrow \infty} C e^{-e^{-x}}\right|_{0} ^{R}=C e^{-e^{0}}-\lim _{R \rightarrow-\infty} C e^{-e^{-R}}+\lim _{R \rightarrow \infty} C e^{-e^{-R}}-C e^{-e^{0}}
\end{aligned}
$$

$$
=0+C=C
$$

So $C=1$, and $p(x)=e^{-x} e^{-e^{-x}}$.
[NOTE: You MUST split this integral. See the definition in section 8.7, and consider Exercise 8.7.50.]

And

$$
\mathrm{P}(-4 \leq X \leq 4)=\int_{-4}^{4} p(x) d x=\left.e^{-e^{-x}}\right|_{-4} ^{4}=e^{-e^{-4}}-e^{-e^{4}} \approx 0.982
$$

Problem 8.8.8

Show that the density function $\mathrm{p}(\mathrm{x})=\frac{1}{\pi} \frac{2}{x^{2}+1}$ on $[0, \infty)$ has infinite mean.

SOLUTION. Using the substitution $u=x^{2}+1$, we find that the mean of this density function is given by

$$
\mu=\int_{0}^{\infty} x p(x) d x=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{1}{\pi} \frac{2 x}{x^{2}+1} d x=\left.\lim _{R \rightarrow \infty} \frac{1}{\pi} \ln \left|x^{2}+1\right|\right|_{0} ^{R}=\infty
$$

So this integral diverges, so this density function has infinite mean.

Problem 8.8.22

According to Maxwell's Distribution Law, in a gas of molecular mass m, the speed v of a molecule in a gas at temperature T (kelvins) is a random variable with density

$$
\mathrm{p}(v)=4 \pi\left(\frac{\mathrm{~m}}{2 \pi \mathrm{kT}}\right)^{3 / 2} v^{2} e^{-\mathrm{m} v^{2} /(2 k T)} \quad(v \geq 0)
$$

where k is Boltzmann's constant. Show that the average molecular speed is equal to $(8 \mathrm{kT} / \pi \mathrm{m})^{1 / 2}$.

Solution. We are asked to find the average speed, so we are taking the mean of this density function:

$$
\mu=\int_{0}^{\infty} v p(v) \mathrm{d} v=4 \pi\left(\frac{\mathrm{~m}}{2 \pi \mathrm{kT}}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-m v^{2} /(2 \mathrm{kT})} \mathrm{d} v
$$

Let $\alpha=-\mathrm{m} /(2 \mathrm{kT})$. We'll compute the indefinite integral

$$
\int v^{3} e^{\alpha v^{2}} d v
$$

To do this, we use integration by parts, with $u=v^{2}, d h=v e^{\alpha v^{2}}$. Then $d u=2 v d v$ and $h=\frac{1}{2 \alpha} e^{\alpha v^{2}}$, and

$$
\int v^{3} e^{\alpha v^{2}} \mathrm{~d} v=\frac{1}{2 \alpha} v^{2} e^{\alpha v^{2}}-\frac{1}{2 \alpha} \int 2 v e^{\alpha v^{2}} \mathrm{~d} v
$$

To compute the latter integral, choose $u=\alpha v^{2}$, then $d u=2 \alpha v d v$, so

$$
\frac{1}{2 \alpha} \int 2 v e^{\alpha v^{2}} \mathrm{~d} v=\frac{1}{2 \alpha^{2}} \int e^{u} \mathrm{~d} u=\frac{1}{2 \alpha^{2}} e^{\alpha v^{2}}-\mathrm{C}
$$

So

$$
\int v^{3} e^{\alpha v^{2}} d v=\frac{1}{2 \alpha} v^{2} e^{\alpha v^{2}}-\frac{1}{2 \alpha^{2}} e^{\alpha v^{2}}+\mathrm{C}
$$

Thus

$$
\begin{aligned}
\mu & =\int_{0}^{\infty} v p(v) d v=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-m v^{2} /(2 k T)} d v \\
& =\left.4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \lim _{R \rightarrow \infty}\left(\frac{1}{2 \alpha} v^{2} e^{\alpha v^{2}}-\frac{1}{2 \alpha^{2}} e^{\alpha v^{2}}\right)\right|_{0} ^{R} \\
& =4 \pi \frac{1}{2 \alpha}\left(\frac{m}{2 \pi k T}\right)^{3 / 2}\left(\lim _{R \rightarrow \infty}\left[e^{R^{2} \alpha}\left(R^{2}-1 / \alpha\right)\right]+1 / \alpha\right)
\end{aligned}
$$

Recall that $\alpha=-\mathrm{m} /(2 \mathrm{kT})<0$, so we can use L'Hopital's rule twice to evaluate the limit:

$$
\lim _{R \rightarrow \infty} e^{R^{2} \alpha}\left(R^{2}-1 / \alpha\right)=\lim _{R \rightarrow \infty} \frac{R^{2}-1 / \alpha}{e^{-R^{2} \alpha}}=\lim _{R \rightarrow \infty} \frac{2 R}{-2 R \alpha e^{-R^{2} \alpha}}=\lim _{R \rightarrow \infty} \frac{-1}{\alpha e^{-R^{2} \alpha}}=0
$$

So

$$
\begin{gathered}
\mu=4 \pi \frac{1}{2 \alpha}\left(\frac{\mathrm{~m}}{2 \pi k T}\right)^{3 / 2}\left(\lim _{\mathrm{R} \rightarrow \infty}\left[e^{\mathrm{R}^{2} \alpha}\left(\mathrm{R}^{2}-1 / \alpha\right)\right]+1 / \alpha\right)=4 \pi \frac{1}{2 \alpha}\left(\frac{\mathrm{~m}}{2 \pi k T}\right)^{3 / 2}\left(\frac{1}{\alpha}\right) \\
=2 \pi \frac{1}{\alpha^{2}}\left(\frac{\mathrm{~m}}{2 \pi k T}\right)^{3 / 2}=2 \pi\left(\frac{2 k T}{\mathrm{~m}}\right)^{2}\left(\frac{\mathrm{~m}}{2 \pi k T}\right) \sqrt{\frac{\mathrm{m}}{2 \pi k T}} \\
=\frac{4 \mathrm{kT}}{\mathrm{~m}} \sqrt{\frac{\mathrm{~m}}{2 \pi k T}}=\sqrt{\frac{8 k T}{\pi m}}
\end{gathered}
$$

Problem 8.8.28

Calculate μ and σ, where σ is the standard deviation, defined by

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x
$$

Here $p(x)=\frac{1}{r} e^{-x / r}$ on $[0, \infty)$, where $r>0$.
SOLUTION.

$$
\mu=\int_{0}^{\infty} x p(x) d x=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{1}{r} x e^{-x / r} d x
$$

Using integration by parts, with $u=x$ and $d v=\frac{1}{r} e^{-x / r} d x$, we get $d u=d x$ and $v=-e^{-x / r}$, so

$$
\begin{aligned}
& \mu=\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{1}{r} x e^{-x / r} d x=-\left.\lim _{R \rightarrow \infty} x e^{-x / r}\right|_{0} ^{R}+\lim _{R \rightarrow \infty} \int_{0}^{R} e^{-x / r} d x \\
= & -\lim _{R \rightarrow \infty} R e^{-R / r}-\left.\lim _{R \rightarrow \infty} r e^{-x / r}\right|_{0} ^{R}=-\lim _{R \rightarrow \infty} \frac{R}{e^{R / r}}-\lim _{R \rightarrow \infty} r e^{-R / r}+r
\end{aligned}
$$

We can solve the first limit with L'Hopital's rule:

$$
-\lim _{R \rightarrow \infty} \frac{R}{e^{R / r}}-\lim _{R \rightarrow \infty} r e^{-R / r}+r=-\lim _{R \rightarrow \infty} \frac{1}{r^{-1} e^{R / r}}+0+r=0+r=r
$$

So $\mu=\mathrm{r}$
Now,

$$
\begin{gathered}
\sigma^{2}=\int_{0}^{\infty} \frac{1}{r}(x-r)^{2} e^{-x / r} d x=\frac{1}{r} \int_{0}^{\infty}\left(x^{2} e^{-x / r}-2 r x e^{-x / r}+r^{2} e^{-x / r}\right) d x \\
\quad=\frac{1}{r} \int_{0}^{\infty} x^{2} e^{-x / r} d x-2 \int_{0}^{\infty} x e^{-x / r} d x+r \int_{0}^{\infty} e^{-x / r} d x
\end{gathered}
$$

Now, the third integral can be rewritten

$$
r \int_{0}^{\infty} e^{-x / r} d x=r^{2} \int_{0}^{\infty} p(x) d x=r^{2}(1)=r^{2}
$$

because $p(x)$ is a density function.
The second integral can be rewritten

$$
-2 \int_{0}^{\infty} x e^{-x / r} d x=-2 r \mu=-2 r^{2}
$$

The first integral can be solved with integration by parts, using $u=x^{2}$ and $d \nu=e^{-x / r} d x$, so $\mathrm{d} u=2 x \mathrm{~d} x$ and $v=-r e^{-x / r}$. Then

$$
\begin{aligned}
\frac{1}{r} \int_{0}^{\infty} x^{2} e^{-x / r} d x & =\left.\frac{1}{r} \lim _{R \rightarrow \infty} x^{2}(-r) e^{-x / r}\right|_{0} ^{R}+\frac{1}{r} \int_{0}^{\infty} 2 r x e^{-x / r} d x \\
& =\frac{1}{r} \lim _{R \rightarrow \infty} \frac{R^{2}(-r)}{e^{-x / r}}+2 r \mu
\end{aligned}
$$

The first limit is 0 , by two applications of L'Hopital's rule, so we get

$$
\frac{1}{r} \lim _{R \rightarrow \infty} \frac{R^{2}(-r)}{e^{-x / r}}+2 r \mu=2 r(r)=2 r^{2}
$$

Putting these together, we find that $\sigma^{2}=2 r^{2}-2 r^{2}+r^{2}=r^{2}$, so $\sigma=r$.

Problem 8.9.2

Find M_{4} and T_{4} for $\int_{0}^{4} \sqrt{\mathrm{x}} \mathrm{dx}$

SOLUTION. $\Delta x=(4-0) / 4=1$, so $x_{i}=\mathfrak{i}$ for $0 \leq i \leq 4$
Thus

$$
\begin{gathered}
M_{4}=\Delta x\left(\sqrt{x_{0}+\frac{1}{2} \Delta x}+\sqrt{x_{1}+\frac{1}{2} \Delta x}+\sqrt{x_{2}+\frac{1}{2} \Delta x}+\sqrt{x_{3}+\frac{1}{2} \Delta x}\right) \\
=\sqrt{1 / 2}+\sqrt{3 / 2}+\sqrt{5 / 2}+\sqrt{7 / 2} \approx 5.38382
\end{gathered}
$$

And

$$
\mathrm{T}_{4}=\frac{1}{2} \Delta x(\sqrt{0}+2 \sqrt{1}+2 \sqrt{2}+2 \sqrt{3}+\sqrt{4}) \approx 5.14626
$$

Problem 8.9.19

Find S_{8} given by Simpson's Rule for $\int_{1}^{4} \ln \mathrm{x} \mathrm{d} \mathrm{x}$

SOLUTION. $\Delta x=(4-1) / 8=3 / 8$, so

$$
\begin{gathered}
\mathrm{S}_{8}=\frac{1}{3}\left(\frac{3}{8}\right)\left(\ln 1+4 \ln \left(1+\frac{3}{8}\right)+2 \ln \left(1+2\left(\frac{3}{8}\right)\right)+4 \ln \left(1+3\left(\frac{3}{8}\right)\right)+\ldots+4 \ln \left(1+7\left(\frac{3}{8}\right)\right)+\ln 4\right) \\
\\
\approx 2.54499
\end{gathered}
$$

Problem 8.9.52

Let $\mathrm{J}=\int_{0}^{\infty} e^{-x^{2}} \mathrm{dx}$ and $\mathrm{J}_{\mathrm{N}}=\int_{0}^{\mathrm{N}} e^{-\mathrm{x}^{2}} \mathrm{dx}$. Although $\mathrm{e}^{-\mathrm{x}^{2}}$ has no elementary antiderivative, it is known that $\mathrm{J}=\sqrt{\pi} / 2$. Let T_{N} be the N th trapezoidal approximation to J_{N}. Calculate T_{4} and show that T_{4} approximates J to three decimal places.

SOLUTION. T_{4} is the 4 th trapezoidal approximation to $\int_{0}^{4} e^{-x^{2}}$, so $\Delta x=(4-0) / 4=1$, and we get $x_{i}=i$ for $0 \leq i \leq 4$, so

$$
\begin{aligned}
& \mathrm{T}_{4}=\frac{1}{2} \Delta x\left(e^{-0^{2}}+2 e^{-1^{2}}+2 e^{-2^{2}}+2 e^{-3^{2}}+e^{-4^{2}}\right) \\
& =\frac{1}{2}\left(1+2 e^{-1}+2 e^{-4}+2 e^{-9}+e^{-16}\right) \approx .8863185
\end{aligned}
$$

Then the error of the approximation of J by T_{4} is given by

$$
\left|J-T_{4}\right|=|\sqrt{\pi} / 2-.8863185| \approx|.8862269-.8863185|<10^{-3}
$$

as desired.
8.9.52

Problem 8.9.64

Calculate M_{10} and S_{10} for the integral $\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{dx}$, whose value we know to be $\pi / 4$ (one-quarter of the area of the unit circle.
(a) We usually expect S_{N} to be more accurate than M_{N}. Which of M_{10} and S_{10} is more accurate in this case?
(b) How do you explain the result of part (a)?

SOLUTION. $\Delta x=(1-0) / 10=.1$, and $x_{i}=(.1) i$ for $0 \leq i \leq 10$, so

$$
M_{10}=.1\left(\sqrt{1-.05^{2}}+\sqrt{1-.15^{2}}+\ldots+\sqrt{1-.85^{2}}+\sqrt{1-.95^{2}}\right) \approx .788103
$$

$$
\begin{gathered}
S_{10}=\frac{1}{3}(.1)\left(\sqrt{1-0^{2}}+4 \sqrt{1-.1^{2}}+2 \sqrt{1-.2^{2}}+\ldots+2 \sqrt{1-.8^{2}}+4 \sqrt{1-.9^{2}}+\sqrt{1-1}\right) \\
\\
\approx .781752
\end{gathered}
$$

(a) The approximation error for M_{10} is $|\pi / 4-.788103| \approx .0027$. The approximation error for S_{10} is $|\pi / 4-.781752| \approx .00365$

So M_{10} is actually closer to $\int_{0}^{1} \sqrt{1-x^{2}} d x$ in this case.
(b) Recall that our error bounds for M_{N} and S_{N} require that $\left|f^{\prime \prime}(x)\right|$ and $\left|f^{(4)}(x)\right|$, respectively, to be continuous and bounded on the interval $[a, b]$ (here $[a, b]=[0,1]$ and $f(x)=$ $\left.\sqrt{1-x^{2}}\right)$.

Computing the first four derivatives of f, we get

$$
\begin{gathered}
f^{\prime}(x)=-x\left(1-x^{2}\right)^{-1 / 2} \\
f^{\prime \prime}(x)=-\left(1-x^{2}\right)^{-3 / 2} \\
f^{(3)}(x)=-3 x\left(1-x^{2}\right)^{-5 / 2} \\
f^{(4)}(x)=-3\left(x^{2}+1\right)\left(1-x^{2}\right)^{(-7 / 2)}
\end{gathered}
$$

Now, we see that as $x \rightarrow 1^{-},\left|f^{\prime \prime}(x)\right|$ and $\left|f^{(4)}(x)\right|$ go to ∞, so our theorems about error bounds do not apply. However, we can see that as $x \rightarrow 1^{-},\left|f^{(4)}(x)\right|$ goes to ∞ much faster than $\left|f^{\prime \prime}(x)\right|$, so the hypotheses on our error bound theorems are, in some sense, more violated in the case of S_{N} than in the case of M_{N}, here. Thus, it is not surprising that M_{N} would provide a better approximation.

