
HOMEWORK SOLUTIONS MATH 1910
Sections 9.1, 9.4, 10.1 Fall 2016

Problem 9.1.3

Find the arc length of y = 1
12
x3 + x−1 for 1 ≤ x ≤ 2.

Hint: Show that 1+ (y ′)2 =
(
1
4
x2 + x−2

)2
.

SOLUTION. y ′ = x2

4
− x−2 so we have

(y ′)2 + 1 =

(
x2

4
− x−2

)2
+ 1 =

x4

16
− 2

x−2x2

4
+ x−4 + 1 =

x4

16
+
1

2
+ x−4 =

(
x2

4
+ x−2

)2
as in the hint. So,

s =

∫2
1

√
1+ (y ′)2dx =

∫2
1

√(
x2

4
+
1

x2

)2
dx =

∫2
1

∣∣∣∣x24 +
1

x2

∣∣∣∣dx = ∫2
1

(
x2

4
+
1

x2

)
dx

since x
2

4
+ 1
x2
> 0

Lastly,

s =

(
x3

12
−
1

x

) ∣∣∣∣2
1

=
8

12
−
1

2
−
1

12
+ 1 =

13

12

9.1.3

Problem 9.1.21

Find the value of a such that the arc length of the catenary y = cosh x for −a ≤ x ≤ a equals 10.

SOLUTION. We find the arc length s of y = cosh x from −a ≤ x ≤ a by

s =

∫a
−a

√
1+ (y ′)2dx =

∫a
−a

√
1+ (sinh x)2dx =

∫a
−a

√
(cosh x)2 =

∫a
−a

cosh xdx

= sinh(x)
∣∣∣∣a
−a

= sinh(a) − sinh(−a) = 2 sinha

since sinh is odd. Setting s = 10we see 2sinha = 10 and a = arcsinh5. 9.1.21

Problem 9.1.48 Show that the surface area of a spherical cap of height h and radius R has surface
area 2πRh
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SOLUTION. The equation of the circle of radius R centered at the origin is x2 + y2 = R2. So, as
part of the sphere centered at the origin, this cap can be obtained by rotating the right half of
this circle about the y-axis from the bottom of the cap at y = R−h to the top of the cap at y = R.
The right half of the circle is given by equation x =

√
R2 − y2, so we have that the radii of the

frustums are x =
√
R2 − y2, from y = R − h to y = R. The length of the frustums are given by

arc length√
1+

(
dx

dy

)2
dy =

√√√√1+( −2y

2
√
R2 − y2

)2
dy =

√
1+

y2

R2 − y2
dy =

√
R2

R2 − y2
dy

Thus, surface area is

∫R
y=R−h

2π
√
R2 − y2

Rdy√
R2 − y2

= 2π

∫R
R−h

Rdy = 2π(Ry)

∣∣∣∣R
R−h

= 2π(R2 − (R2 − hR)) = 2πRh

9.1.48

Problem 9.1.49 Find the surface area of the torus obtained by rotating the circle x2+(y−b)2 = r2

about the x-axis

SOLUTION. Solving for y we get y = b ±
√
r2 − x2. So the top half of this circle is given by

y1 = b+
√
r2 − x2 and the bottom half of this circle given y2 = b−

√
r2 − x2. Then the surface

area of the torus is the surface area of both of these halves rotated about the x-axis from x = −r
to x = r:∫r

−r

2π
(
b+

√
r2 − x2

)√
1+ (y ′

1)
2dx+

∫r
−r

2π
(
b−

√
r2 − x2

)√
1+ (y ′

2)
2dx

=

∫r
−r

2π
(
b+

√
r2 − x2

)√
1+

(
−2x

2
√
r2 − x2

)2
dx+

∫r
−r

2π
(
b−

√
r2 − x2

)√
1+

(
2x

2
√
r2 − x2

)2
dx
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=

∫r
−r

2π
(
b+

√
r2 − x2

)√
1+

x2

(r2 − x2)
dx+

∫r
−r

2π
(
b−

√
r2 − x2

)√
1+

x2

(r2 − x2)
dx

=

∫r
−r

2π
(
b+

√
r2 − x2

)√ r2

(r2 − x2)
dx+

∫r
−r

2π
(
b−

√
r2 − x2

)√ r2

(r2 − x2)
dx

= 2π

∫r
−r

√
r2

(r2 − x2)

(
b+

√
r2 − x2 + b−

√
r2 − x2

)
dx = 2π

∫r
−r

r√
r2 − x2

(2b)dx

Letting x = ur and dx = rdu

= 4πrb

∫r
−r

1√
r2 − x2

dx = 4πrb

∫1
−1

du√
1− u2

= 4πrb (arcsinu)
∣∣∣∣1
−1

= 4πrb (arcsin(1) − arcsin(−1)) = 4πrb
(
π

2
−

−π

2

)
= 4π2rb

9.1.49
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Problem 9.4.4 Calculate the Taylor polynomials T2 and T3 centered at x = −1 for the function
f(x) = 1

1+x2

SOLUTION. We calculate the derivatives:

f(x) =
1

1+ x2
f(−1) =

1

2
(1)

f ′(x) = −
2x

(1+ x2)2
f ′(−1) =

1

2
(2)

f ′′(x) = −
2

(1+ x2)2
+

8x2

(1+ x2)3
f ′′(−1) = −

1

2
+
8

8
=
1

2
(3)

f ′′′(x) =
8x

(1+ x2)3
+

16x

(1+ x2)3
−

48x3

(1+ x2)4
f ′′′(−1) = 0 (4)

Since f ′′′(−1) = 0, we see that

T3 =

3∑
j=0

fj(−1)

j!
(x+1)j = T2 =

2∑
j=0

fj(−1)

j!
(x+1)j =

1

2
+
1

2
(x+1)+

1

2(2!)
(x+1)2 =

1

2
+
1

2
(x+1)+

1

4
(x+1)2

9.4.4

Problem 9.4.8 Calculate the Taylor polynomials T2 and T3 centered at x = π
4

for the function
f(x) = tan x

SOLUTION. First, we calculate and evaluate the needed derivatives:

f(x) = tan x→ f(
π

4
) = 1

f ′(x) = sec2 x→ f ′(
π

4
) = 2

f ′′(x) = 2 sec2 x tan x→ f ′′(
π

4
) = 4

f ′′′(x) = 2 sec4 x+ 4 sec2 x tan2 x→ f ′′′(
π

4
) = 16

Then, we see

T2(x) =

2∑
j=0

fj(π
4
)

j!
(x−

π

4
)j = 1+ 2

(
x−

π

4

)
+ 2

(
x−

π

4

)2
And

T3(x) =

3∑
j=0

fj(π
4
)

j!
(x−

π

4
)j = 1+ 2

(
x−

π

4

)
+ 2

(
x−

π

4

)2
+
8

3

(
x−

π

4

)3
9.4.8

Problem 9.4.18 Show that the Maclaurin polyomials for f(x) = ln(1+ x) are

Tn(x) = x−
x2

2
+
x3

3
+ · · ·+ (−1)n−1

xn

n
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SOLUTION. Let f(x) = ln(1+ x) → f(0) = 0. Then we see

f ′(x) = (1+ x)−1 → f ′(0) = 1

f ′′(x) = −(1+ x)−2 → f ′′(0) = −1

f ′′′(x) = 2(1+ x)−3 → f ′′′(0) = 2

f(4)(x) = −3!(1+ x)−4 → f(4)(0) = −6

f(5)(x) = 4!(1+ x)−5 → f(5)(0) = 24

So that in general

f(n)(x) = (−1)n−1(n− 1)!(1+ x)−n → f(n)(0) = (−1)n−1(n− 1)!

Thus,

Tn(x) = x−
1

2!
x2 +

2

3!
x3 − · · ·+ (−1)n−1(n− 1)!

n!
xn = x−

x2

2
+
x3

3
+ · · ·+ (−1)n−1

xn

n

9.4.18

Problem 9.4.59 Let a be the length of the chord AC of angle θ of the unit circle. Derive the
following approximation for the excess of the arc over the chord:

θ− a ≈ θ
3

24

Hint: Show that θ− a = θ− 2 sin(θ
2
) and use the third Maclaurin polynomial as an approximation.

SOLUTION. Draw a line from the center of the circle to B, forming (two) right triangles with
hypotenuses length 1 and side opposite angle θ

2
of length a

2
. Thus, we see that sin

(
θ
2

)
= a
2

.

Then, we obtain the hint: 2 sin
(
θ
2

)
= a so θ − 2 sin

(
θ
2

)
= θ − a. From the hint, we next

approximate f(θ) = sin
(
θ
2

)
using the third Maclaurin polynomial:

f(θ) = sin
(
θ

2

)
f(0) = 0 (5)

f ′(θ) =
1

2
cos
(
θ

2

)
f ′(0) =

1

2
(6)

f ′′(θ) = −
1

4
sin
(
θ

2

)
f ′′(0) = 0 (7)

f ′′′(θ) = −
1

8
cos
(
θ

2

)
f ′′′(0) = −

1

8
(8)
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Thus we have

sin
(
θ

2

)
= f(θ) ≈

3∑
j=0

fj(0)

j!
θj = 0+

1

2
θ+ 0+

(
−

1

8(3!)

)
θ3 =

1

2
θ−

1

48
θ3

And

θ− a = θ− 2 sin
(
θ

2

)
≈ θ− 2

(
1

2
θ−

1

48
θ3
)

= θ− θ+
1

24
θ3 =

1

24
θ3

9.4.59

Problem 10.1.14 Use Separation of Variables to find the general solution of y ′ + 4xy2 = 0

SOLUTION.
dy

dx
= −4xy2 → y−2 dy = −4x dx

Integrating both sides, ∫
y−2 dy = −4

∫
x dx

−y−1 = −2x2 + C

y−1 = 2x2 + C

Thus we have that for arbitrary C,

y =
1

2x2 + C

10.1.14

Problem 10.1.16 Use Separation of Variables to find the general solution of y ′ − ex+y = 0

SOLUTION.
dy

dx
= exey → e−y dy = ex dx

Integrating both sides, ∫
e−y dy =

∫
ex dx

−e−y = ex + C

e−y = −ex + C

Thus for arbitrary C,
y = − ln(−ex + C)

10.1.16

Problem 10.1.40 Solve the Initial Value Problem dy
dt

= te−y, y(1) = 0
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SOLUTION. We see that eydy = tdt, so integrating we obtain ey = t2

2
+ C. From y(1) = 0 we

see e0 = 1
2
+ C→ C = 1

2
Hence,

y = ln
(
t2

2
+
1

2

)

10.1.40

Problem 10.1.45 Find all values of a such that y = xa is a solution of y ′′ − 12x−2y = 0

SOLUTION. If y = xa then y ′ = axa−1 and y ′′ = a(a− 1)xa−2. So we see that we must have

(a(a−1)xa−2)−12x−2(xa) = (a(a−1)xa−2)−12xa−2 = (a(a−1)−12)xa−2 = (a2−a−12)xa−2 = 0

This can happen if and only if (a2 − a − 12) = (a − 4)(a + 3) = 0. Thus, this is when a = 4 or
a = −3.

10.1.45

Problem 10.1.55

Figure 8 shows a circuit consisting of a resistor of R ohms, a capacitor of C farads, and a battery of
voltage V . When the circuit is completed, the amount of charge q(t) (in coulombs) on the plates of the
capacitor varies according to the differential equation (t in seconds)

R
dq

dt
+
1

C
q = V

where R, C, and V are constants.

1. Solve for q(t), assuming that q(0) = 0.

2. Sketch the graph of q.

3. Show that limt→∞ q(t) = CV .

4. Show that the capacitor charges to approximately 63% of its final value CV after a time period of
length τ = RC (τ is called the time constant of the capacitor).

SOLUTION. 1.

R
dq

dt
+
1

C
q = V so

dq

dt
=
1

R

(
−1

C
q+ V

)
=

−q

RC
+
V

R
=

−q+ VC

RC

7



Rearranging,

dq

−q+ VC
=
dt

RC
and

∫
dq

−q+ VC
=

∫
dt

RC
so − ln |− q+ CV | =

t

RC
+ k

Then,

ln |− q+ CV | = −
t

RC
− k and |− q+ CV | = e−

t
RC e−k = Ke−

t
RC

Thus,
−q+ CV = ±Ke− t

RC = Ke−
t

RC so q(t) = CV − Ke−
t

RC

Plugging in q(0) = 0, we see 0 = CV − K→ K = CV . Thus, we have

q(t) = CV − CVe−
t

RC

2. The graph is below

3. From part a, limt→∞ CV − CVe−
t

RC = CV − CV limt→∞ e− t
RC = CV − CV(0) = CV

4. After τ = RCwe have q(t) = q(RC) = CV − CVe−
RC
RC = CV(1− e−1) ≈ .632CV .

10.1.55
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