Problem 9.1.3

Find the arc length of $y=\frac{1}{12} x^{3}+x^{-1}$ for $1 \leq x \leq 2$.
Hint: Show that $1+\left(y^{\prime}\right)^{2}=\left(\frac{1}{4} x^{2}+x^{-2}\right)^{2}$.
SOLUTION. $y^{\prime}=\frac{x^{2}}{4}-x^{-2}$ so we have

$$
\left(y^{\prime}\right)^{2}+1=\left(\frac{x^{2}}{4}-x^{-2}\right)^{2}+1=\frac{x^{4}}{16}-2 \frac{x^{-2} x^{2}}{4}+x^{-4}+1=\frac{x^{4}}{16}+\frac{1}{2}+x^{-4}=\left(\frac{x^{2}}{4}+x^{-2}\right)^{2}
$$

as in the hint. So,

$$
s=\int_{1}^{2} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{1}^{2} \sqrt{\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right)^{2}} d x=\int_{1}^{2}\left|\frac{x^{2}}{4}+\frac{1}{x^{2}}\right| d x=\int_{1}^{2}\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right) d x
$$

since $\frac{x^{2}}{4}+\frac{1}{x^{2}}>0$
Lastly,

$$
\begin{equation*}
s=\left.\left(\frac{x^{3}}{12}-\frac{1}{x}\right)\right|_{1} ^{2}=\frac{8}{12}-\frac{1}{2}-\frac{1}{12}+1=\frac{13}{12} \tag{tabular}
\end{equation*}
$$

Problem 9.1.21

Find the value of a such that the arc length of the catenary $y=\cosh x$ for $-a \leq x \leq a$ equals 10 .
SOLUTION. We find the arc length s of $y=\cosh x$ from $-a \leq x \leq a$ by

$$
\begin{gathered}
s=\int_{-a}^{a} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{-a}^{a} \sqrt{1+(\sinh x)^{2}} d x=\int_{-a}^{a} \sqrt{(\cosh x)^{2}}=\int_{-a}^{a} \cosh x d x \\
=\left.\sinh (x)\right|_{-a} ^{a}=\sinh (a)-\sinh (-a)=2 \sinh a
\end{gathered}
$$

since \sinh is odd. Setting $s=10$ we see $2 \sinh a=10$ and $a=\operatorname{arcsinh} 5$.

Problem 9.1.48 Show that the surface area of a spherical cap of height h and radius R has surface area $2 \pi R h$

SOLUTION. The equation of the circle of radius R centered at the origin is $x^{2}+y^{2}=R^{2}$. So, as part of the sphere centered at the origin, this cap can be obtained by rotating the right half of this circle about the y-axis from the bottom of the cap at $y=R-h$ to the top of the cap at $y=R$. The right half of the circle is given by equation $x=\sqrt{R^{2}-y^{2}}$, so we have that the radii of the frustums are $x=\sqrt{R^{2}-y^{2}}$, from $y=R-h$ to $y=R$. The length of the frustums are given by arc length

$$
\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\sqrt{1+\left(\frac{-2 y}{2 \sqrt{R^{2}-y^{2}}}\right)^{2}} d y=\sqrt{1+\frac{y^{2}}{R^{2}-y^{2}}} d y=\sqrt{\frac{R^{2}}{R^{2}-y^{2}}} d y
$$

Thus, surface area is

$$
\int_{y=R-h}^{R} 2 \pi \sqrt{R^{2}-y^{2}} \frac{R d y}{\sqrt{R^{2}-y^{2}}}=2 \pi \int_{R-h}^{R} R d y=\left.2 \pi(R y)\right|_{R-h} ^{R}=2 \pi\left(R^{2}-\left(R^{2}-h R\right)\right)=2 \pi R h
$$

Problem 9.1.49 Find the surface area of the torus obtained by rotating the circle $x^{2}+(y-b)^{2}=r^{2}$ about the x-axis

SOLUTION. Solving for y we get $y=b \pm \sqrt{r^{2}-x^{2}}$. So the top half of this circle is given by $y_{1}=b+\sqrt{r^{2}-x^{2}}$ and the bottom half of this circle given $y_{2}=b-\sqrt{r^{2}-x^{2}}$. Then the surface area of the torus is the surface area of both of these halves rotated about the x-axis from $x=-r$ to $x=r$:

$$
\begin{gathered}
\int_{-r}^{r} 2 \pi\left(b+\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\left(y_{1}^{\prime}\right)^{2}} d x+\int_{-r}^{r} 2 \pi\left(b-\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\left(y_{2}^{\prime}\right)^{2}} d x \\
=\int_{-r}^{r} 2 \pi\left(b+\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\left(\frac{-2 x}{2 \sqrt{r^{2}-x^{2}}}\right)^{2}} d x+\int_{-r}^{r} 2 \pi\left(b-\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\left(\frac{2 x}{2 \sqrt{r^{2}-x^{2}}}\right)^{2}} d x
\end{gathered}
$$

$$
\begin{aligned}
& =\int_{-r}^{r} 2 \pi\left(b+\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\frac{x^{2}}{\left(r^{2}-x^{2}\right)}} d x+\int_{-r}^{r} 2 \pi\left(b-\sqrt{r^{2}-x^{2}}\right) \sqrt{1+\frac{x^{2}}{\left(r^{2}-x^{2}\right)}} d x \\
& \quad=\int_{-r}^{r} 2 \pi\left(b+\sqrt{r^{2}-x^{2}}\right) \sqrt{\frac{r^{2}}{\left(r^{2}-x^{2}\right)}} d x+\int_{-r}^{r} 2 \pi\left(b-\sqrt{r^{2}-x^{2}}\right) \sqrt{\frac{r^{2}}{\left(r^{2}-x^{2}\right)}} d x \\
& \quad=2 \pi \int_{-r}^{r} \sqrt{\frac{r^{2}}{\left(r^{2}-x^{2}\right)}}\left(b+\sqrt{r^{2}-x^{2}}+b-\sqrt{r^{2}-x^{2}}\right) d x=2 \pi \int_{-r}^{r} \frac{r}{\sqrt{r^{2}-x^{2}}}(2 b) d x
\end{aligned}
$$

Letting $x=u r$ and $d x=r d u$

$$
\begin{aligned}
= & 4 \pi r b \int_{-r}^{r} \frac{1}{\sqrt{r^{2}-x^{2}}} \mathrm{~d} x=4 \pi r b \int_{-1}^{1} \frac{d u}{\sqrt{1-u^{2}}}=\left.4 \pi r b(\arcsin u)\right|_{-1} ^{1} \\
& =4 \pi r b(\arcsin (1)-\arcsin (-1))=4 \pi r b\left(\frac{\pi}{2}-\frac{-\pi}{2}\right)=4 \pi^{2} r b
\end{aligned}
$$

Problem 9.4.4 Calculate the Taylor polynomials T_{2} and T_{3} centered at $x=-1$ for the function $f(x)=\frac{1}{1+x^{2}}$

SOLUTION. We calculate the derivatives:

$$
\begin{align*}
f(x) & =\frac{1}{1+x^{2}} & f(-1) & =\frac{1}{2} \tag{1}\\
f^{\prime}(x) & =-\frac{2 x}{\left(1+x^{2}\right)^{2}} & f^{\prime}(-1) & =\frac{1}{2} \tag{2}\\
f^{\prime \prime}(x) & =-\frac{2}{\left(1+x^{2}\right)^{2}}+\frac{8 x^{2}}{\left(1+x^{2}\right)^{3}} & f^{\prime \prime}(-1) & =-\frac{1}{2}+\frac{8}{8}=\frac{1}{2} \\
f^{\prime \prime \prime}(x) & =\frac{8 x}{\left(1+x^{2}\right)^{3}}+\frac{16 x}{\left(1+x^{2}\right)^{3}}-\frac{48 x^{3}}{\left(1+x^{2}\right)^{4}} & f^{\prime \prime \prime}(-1) & =0
\end{align*}
$$

Since $f^{\prime \prime \prime}(-1)=0$, we see that

$$
T_{3}=\sum_{j=0}^{3} \frac{f^{j}(-1)}{j!}(x+1)^{j}=T_{2}=\sum_{j=0}^{2} \frac{f^{j}(-1)}{j!}(x+1)^{j}=\frac{1}{2}+\frac{1}{2}(x+1)+\frac{1}{2(2!)}(x+1)^{2}=\frac{1}{2}+\frac{1}{2}(x+1)+\frac{1}{4}(x+1)^{2}
$$

Problem 9.4.8 Calculate the Taylor polynomials T_{2} and T_{3} centered at $x=\frac{\pi}{4}$ for the function $f(x)=\tan x$

SOLUTION. First, we calculate and evaluate the needed derivatives:

$$
\begin{gathered}
f(x)=\tan x \rightarrow f\left(\frac{\pi}{4}\right)=1 \\
f^{\prime}(x)=\sec ^{2} x \rightarrow f^{\prime}\left(\frac{\pi}{4}\right)=2 \\
f^{\prime \prime}(x)=2 \sec ^{2} x \tan x \rightarrow f^{\prime \prime}\left(\frac{\pi}{4}\right)=4 \\
f^{\prime \prime \prime}(x)=2 \sec ^{4} x+4 \sec ^{2} x \tan ^{2} x \rightarrow f^{\prime \prime \prime}\left(\frac{\pi}{4}\right)=16
\end{gathered}
$$

Then, we see

$$
T_{2}(x)=\sum_{j=0}^{2} \frac{f^{j}\left(\frac{\pi}{4}\right)}{j!}\left(x-\frac{\pi}{4}\right)^{j}=1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}
$$

And

$$
T_{3}(x)=\sum_{j=0}^{3} \frac{f^{j}\left(\frac{\pi}{4}\right)}{j!}\left(x-\frac{\pi}{4}\right)^{j}=1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}+\frac{8}{3}\left(x-\frac{\pi}{4}\right)^{3}
$$

Problem 9.4.18 Show that the Maclaurin polyomials for $f(x)=\ln (1+x)$ are

$$
T_{n}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}
$$

SOLUTION. Let $\mathrm{f}(\mathrm{x})=\ln (1+x) \rightarrow \mathrm{f}(0)=0$. Then we see

$$
\begin{gathered}
f^{\prime}(x)=(1+x)^{-1} \rightarrow f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-(1+x)^{-2} \rightarrow f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=2(1+x)^{-3} \rightarrow f^{\prime \prime \prime}(0)=2 \\
f^{(4)}(x)=-3!(1+x)^{-4} \rightarrow f^{(4)}(0)=-6 \\
f^{(5)}(x)=4!(1+x)^{-5} \rightarrow f^{(5)}(0)=24
\end{gathered}
$$

So that in general

$$
f^{(n)}(x)=(-1)^{n-1}(n-1)!(1+x)^{-n} \rightarrow f^{(n)}(0)=(-1)^{n-1}(n-1)!
$$

Thus,

$$
T_{n}(x)=x-\frac{1}{2!} x^{2}+\frac{2}{3!} x^{3}-\cdots+\frac{(-1)^{n-1}(n-1)!}{n!} x^{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}
$$

Problem 9.4.59 Let a be the length of the chord $\overline{\mathrm{AC}}$ of angle θ of the unit circle. Derive the following approximation for the excess of the arc over the chord:

$$
\theta-a \approx \frac{\theta^{3}}{24}
$$

Hint: Show that $\theta-a=\theta-2 \sin \left(\frac{\theta}{2}\right)$ and use the third Maclaurin polynomial as an approximation.

Solution. Draw a line from the center of the circle to B , forming (two) right triangles with hypotenuses length 1 and side opposite angle $\frac{\theta}{2}$ of length $\frac{a}{2}$. Thus, we see that $\sin \left(\frac{\theta}{2}\right)=\frac{a}{2}$.

Then, we obtain the hint: $2 \sin \left(\frac{\theta}{2}\right)=a$ so $\theta-2 \sin \left(\frac{\theta}{2}\right)=\theta-a$. From the hint, we next approximate $f(\theta)=\sin \left(\frac{\theta}{2}\right)$ using the third Maclaurin polynomial:

$$
\begin{align*}
f(\theta) & =\sin \left(\frac{\theta}{2}\right) & f(0) & =0 \tag{5}\\
f^{\prime}(\theta) & =\frac{1}{2} \cos \left(\frac{\theta}{2}\right) & f^{\prime}(0) & =\frac{1}{2} \\
f^{\prime \prime}(\theta) & =-\frac{1}{4} \sin \left(\frac{\theta}{2}\right) & f^{\prime \prime}(0) & =0 \tag{6}\\
f^{\prime \prime \prime}(\theta) & =-\frac{1}{8} \cos \left(\frac{\theta}{2}\right) & f^{\prime \prime \prime}(0) & =-\frac{1}{8}
\end{align*}
$$

Thus we have

$$
\sin \left(\frac{\theta}{2}\right)=f(\theta) \approx \sum_{j=0}^{3} \frac{f^{j}(0)}{j!} \theta^{j}=0+\frac{1}{2} \theta+0+\left(-\frac{1}{8(3!)}\right) \theta^{3}=\frac{1}{2} \theta-\frac{1}{48} \theta^{3}
$$

And

$$
\theta-a=\theta-2 \sin \left(\frac{\theta}{2}\right) \approx \theta-2\left(\frac{1}{2} \theta-\frac{1}{48} \theta^{3}\right)=\theta-\theta+\frac{1}{24} \theta^{3}=\frac{1}{24} \theta^{3}
$$

Problem 10.1.14 Use Separation of Variables to find the general solution of $y^{\prime}+4 x y^{2}=0$
SOLUTION.

$$
\frac{d y}{d x}=-4 x y^{2} \rightarrow y^{-2} d y=-4 x d x
$$

Integrating both sides,

$$
\begin{gathered}
\int y^{-2} d y=-4 \int x d x \\
-y^{-1}=-2 x^{2}+C \\
y^{-1}=2 x^{2}+C
\end{gathered}
$$

Thus we have that for arbitrary C,

$$
y=\frac{1}{2 x^{2}+C}
$$

10.1.14

Problem 10.1.16 Use Separation of Variables to find the general solution of $y^{\prime}-e^{x+y}=0$

SOLUTION.

$$
\frac{d y}{d x}=e^{x} e^{y} \rightarrow e^{-y} d y=e^{x} d x
$$

Integrating both sides,

$$
\begin{gathered}
\int e^{-y} d y=\int e^{x} d x \\
-e^{-y}=e^{x}+C \\
e^{-y}=-e^{x}+C
\end{gathered}
$$

Thus for arbitrary C,

$$
y=-\ln \left(-e^{x}+C\right)
$$

Problem 10.1.40 Solve the Initial Value Problem $\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{t} \mathrm{e}^{-\mathrm{y}}, \mathrm{y}(1)=0$

SOLUTION. We see that $e^{y} d y=t d t$, so integrating we obtain $e^{y}=\frac{t^{2}}{2}+C$. From $y(1)=0$ we see $e^{0}=\frac{1}{2}+C \rightarrow C=\frac{1}{2}$ Hence,

$$
y=\ln \left(\frac{t^{2}}{2}+\frac{1}{2}\right)
$$

10.1 .40

Problem 10.1.45 Find all values of a such that $y=x^{a}$ is a solution of $y^{\prime \prime}-12 x^{-2} y=0$

SOLUTION. If $y=x^{a}$ then $y^{\prime}=a x^{a-1}$ and $y^{\prime \prime}=a(a-1) x^{a-2}$. So we see that we must have
$\left(a(a-1) x^{a-2}\right)-12 x^{-2}\left(x^{a}\right)=\left(a(a-1) x^{a-2}\right)-12 x^{a-2}=(a(a-1)-12) x^{a-2}=\left(a^{2}-a-12\right) x^{a-2}=0$

This can happen if and only if $\left(a^{2}-a-12\right)=(a-4)(a+3)=0$. Thus, this is when $a=4$ or $a=-3$.

Problem 10.1.55

Figure 8 shows a circuit consisting of a resistor of R ohms, a capacitor of C farads, and a battery of voltage V . When the circuit is completed, the amount of charge $\mathrm{q}(\mathrm{t})$ (in coulombs) on the plates of the capacitor varies according to the differential equation (t in seconds)

$$
\mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{1}{\mathrm{C}} \mathrm{q}=\mathrm{V}
$$

where R, C, and V are constants.

1. Solve for $\mathrm{q}(\mathrm{t})$, assuming that $\mathrm{q}(0)=0$.
2. Sketch the graph of q .
3. Show that $\lim _{t \rightarrow \infty} \mathrm{q}(\mathrm{t})=\mathrm{CV}$.
4. Show that the capacitor charges to approximately 63% of its final value CV after a time period of length $\tau=R C$ (τ is called the time constant of the capacitor).

SOLUTION. 1.

$$
R \frac{d q}{d t}+\frac{1}{C} q=V \text { so } \frac{d q}{d t}=\frac{1}{R}\left(\frac{-1}{C} q+V\right)=\frac{-q}{R C}+\frac{V}{R}=\frac{-q+V C}{R C}
$$

Rearranging,

$$
\frac{d q}{-q+V C}=\frac{d t}{R C} \text { and } \int \frac{d q}{-q+V C}=\int \frac{d t}{R C} \text { so }-\ln |-q+C V|=\frac{t}{R C}+k
$$

Then,

$$
\ln |-q+C V|=-\frac{t}{R C}-k \text { and }|-q+C V|=e^{-\frac{t}{R C}} e^{-k}=K e^{-\frac{t}{R C}}
$$

Thus,

$$
-q+C V= \pm K e^{-\frac{t}{R C}}=K e^{-\frac{t}{R C}} \text { so } q(t)=C V-K e^{-\frac{t}{R C}}
$$

Plugging in $q(0)=0$, we see $0=C V-K \rightarrow K=C V$. Thus, we have

$$
\mathrm{q}(\mathrm{t})=\mathrm{CV}-C V e^{-\frac{t}{R C}}
$$

2. The graph is below

3. From part a, $\lim _{t \rightarrow \infty} C V-C V e^{-\frac{t}{R C}}=C V-C V \lim _{t \rightarrow \infty} e^{-\frac{t}{R C}}=C V-C V(0)=C V$
4. After $\tau=R C$ we have $q(t)=q(R C)=C V-C V e^{-\frac{R C}{R C}}=C V\left(1-e^{-1}\right) \approx .632 C V$.
