
HOMEWORK SOLUTIONS MATH 1910
Sections 11.1, 11.2, 11.3 Fall 2016

Problem 11.1.26 Use Theorem 1 to determine the limit of the sequence or state that the sequence
diverges.

rn = lnn− ln(n2 + 1)

SOLUTION. We have rn = f(n), where f(x) = ln x− ln(x2 + 1); thus,

lim
n→∞(lnn− ln(n2 + 1)) = lim

n→∞(ln x− ln(x2 + 1)) = lim
x→∞ ln

x

x2 + 1

but this function diverges as x→∞, so rn diverges as well. 11.1.26

Problem 11.1.74 Show that an = 3
√
n+ 1− n is decreasing.

SOLUTION. Let f(x) = 3
√
x+ 1− x. Then

f ′(x) =
d

dx

(
(x+ 1)1/3 − x

)
=

1

3
(x+ 1)−2/3 − 1

For x ≥ 1,
1

3
(x+ 1)−2/3 − 1 ≤ 1

3
2−2/3 − 1 < 0

We conclude that f is decreasing on the interval x ≥ 1; it follows that an = f(n) is also decreas-
ing. 11.1.74

Problem 11.2.14 Use partial fractions to rewrite
∑∞

n=1
1

n(n+3) as a telescoping series and find its
sum.

SOLUTION. By partial fraction decomposition

1

n(n+ 3)
=

A

n
+

B

n+ 3
;

clearing denominators gives
1 = A(n+ 3) + Bn.

Setting n = 0 yields A = 1
3

, while setting n = −3 yields B = 1
3

. Thus,

1

n(n+ 3)
=

1

3

(
1

n
−

1

n+ 3

)
,

and ∞∑
n=1

1

n(n+ 3)
=

∞∑
n=1

1

3

(
1

n
−

1

n+ 3

)
.

The general term in the sequence of partial sums for the series on the right-hand side is

SN =
1

3

(
1−

1

4

)
+

1

3

(
1

2
−

1

5

)
+

1

3

(
1

3
−

1

6

)
+

1

3

(
1

4
−

1

7

)
+

1

3

(
1

5
−

1

8

)
+

1

3

(
1

6
−

1

9

)

1



+ · · ·+ 1

3

(
1

N− 2
−

1

N+ 1

)
+

1

3

(
1

N− 1
−

1

N+ 2

)
+

1

3

(
1

N
−

1

N+ 3

)

=
1

3

(
1+

1

2
+

1

3

)
−

1

3

(
1

N+ 1
+

1

N+ 2
+

1

N+ 3

)
=

11

18
−

1

3

(
1

N+ 1
+

1

N+ 2
+

1

N+ 3

)
.

Thus,

lim
N→∞SN = lim

N→∞
[
11

18
−

1

3

(
1

N+ 1
+

1

N+ 2
+

1

N+ 3

)]
=

11

18
,

and ∞∑
n=1

1

n(n+ 3)
=

11

18
.

11.2.14

Problem 11.2.16 Find a formula for the partial sum SN of
∞∑

n=1

(−1)n−1 and show that the series

diverges.

SOLUTION. The partial sums of the series are:

S1 = (−1)1−1 = 1;

S2 = (−1)0 + (−1)1 = 1− 1 = 0;

S3 = (−1)0 + (−1)1 + (−1))2 = 1;

S4 = (−1)0 + (−1)1 + (−1)2 + (−1)3 = 0; . . .

In general,

SN =

{
1 if N odd
0 if N even

Because the values of SN alterenate between 0 and 1, the sequence of partial sums diverges;

this, in turn, implies that the series
∞∑

n=1

(−1)n−1 diverges. 11.2.16

Problem 11.2.18 Use the nth Term Divergence Test (Theorem 3) to prove that the following series
diverges: ∞∑

n=1

n√
n2 + 1

.

SOLUTION. The general term, n√
n2+1

, has limit

lim
n→∞ n√

n2 + 1
= lim

n→∞
√

n2

n2 + 1
= lim

n→∞
√

1

1+ (1/n2)
= 1

Since the general term does not tend to zero, the series diverges. 11.2.18
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Problem 11.2.24 Use the formula for the sum of a geometric series to find the sum or state that the
series diverges.

43

53
+

44

54
+

45

55
+

45

55
+ · · ·

SOLUTION. This a geometric series with

c =
43

53
and r =

4

5

so its sum is
c

1− r
=

43/53

1− 4
5

=
43

53 − 4 ∗ 52
=

64

25

11.2.24

Problem 11.2.26 Use the formula for the sum of a geometric series to find the sum or state that the
series diverges. ∞∑

n=3

(
3

11

)−n

SOLUTION. Rewrite this series as ∞∑
n=3

(
11

3

)n

This is a geometric series with r = 11
3

> 1, so it is divergent. 11.2.26

Problem 11.2.38 Determine a reduced fraction that has this repeating decimal.

0.454545 . . .

SOLUTION. The decimal may be regarded as a geometric series:

0.454545 . . . =
45

100
+

45

10000
+

45

1000000
+ · · · =

∞∑
n=1

45

102n
.

The series has first term 45
100

= 9
20

and ratio 1
100

, so its sum is

0.45454545 . . . =
9/20

1− 1/100
=

9

20
· 100
99

=
5

11
.

11.2.38

Problem 11.2.47 Give a counterexample to show that each of the following statements is false

(a) If the general term an tends to zero, then
∑∞

n=1 an = 0.

(b) The Nth partial sum of the infinite series defined by an is aN.

(c) If an tends to zero, then
∑∞

n=1 an converges.

(d) If an tends to L, then
∑∞

n=1 an = L.
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SOLUTION. (a) If the general term an tends to zero, the series may or may not converge.
Even if the series converges, it may not converge to zero. For example, with the harmonic
series, where an = 1

n
, we have limn→∞ an = 0, but

∑∞
n=1 an diverges.

(b) The Nth partial sum of the series
∑∞

n=1 an is SN = a1 +a2 + · · ·+aN. For example, take
the infinite series defined by an = 1 for all n. Then aN = 1 but the Nth partial sum is N.

(c) If the general term an tends to zero, the series may or may not converge. See part (a) for
an example.

(d) If L 6= 0, then the series diverges by the nth Term Divergence Test. If L = 0, the series may
or may not converge, and even if it does converge, it may not converge to L = 0. For an
example of the first case, take the series defined by an = 1 for all n; for the second, take
the harmonic series.

11.2.47

Problem 11.2.56 A ball dropped from a height of 10 ft begins to bounce vertically. Each time it
strikes the ground, it returns to two-thirds of its previous height. What is the total vertical distance
traveled by the ball if it bounces infinitely many times?

SOLUTION. The distance traveled by the ball is shown in the accompanying figure:

The total distance d traveled by the ball is given by the following infinite sum:

d = h+ 2 · 2
3
h+ 2 ·

(
2

3

)2

h+ 2 ·
(
2

3

)3

h+ · · · = h+ 2h

(
2

3
+

(
2

3

)2

+

(
2

3

)3

+ · · ·

)

= h+ 2h

∞∑
n=1

(
2

3

)n

.

We use the formula for the sum of a geometric series to compute the sum of the resulting series:

d = h+ 2h · (2/3)1

1− (2/3)
= h+ 2h(2) = 5h.

With h = 10 feet, it follows that the total distance traveled by the ball is 50 feet. 11.2.56
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Problem 11.3.12 Use the Integral Test to determine whether the infinite series
∞∑

n=1

ln n
n2 is conver-

gent.

SOLUTION. Let f(x) = ln x
x2 . Because

f ′(x) =
1
x
x2 − 2x ln x

x4
=

x(1− 2 ln x)

x4
=

1− 2 ln x

x3

we see that f ′(x) < 0 for x >
√
e ∼ 1.65. We conclude that f is decreasing on the interval x ≥ 2.

Since f is also positive and continuous on this interval, the Integral Test can be applied. By
Integration by Parts, we find∫

ln x

x2
= −

ln x

x
+

∫
x−2dx = −

ln x

x
−

1

x
+ C

Therefore, ∫∞
2

ln x

x2
= lim

R→∞
∫R
2

ln x

x2
= lim

R→∞
1

2

ln 2

2
−

1

R
−

lnR

R
=

1+ ln 2

2
− lim

R→∞
lnR

R

We compute the resulting limit using L’Hopital’s Rule:

lim
R→∞

lnR

R
= lim

R→∞
1/R

1
= 0

Hence, ∫∞
2

ln x

x2
=

1+ ln 2

2

This integral converges; therefore, the series
∞∑

n=2

lnn

n2
also converges. Since the convergence of

the series is not affected by adding ln 1
1

, the series
∞∑

n=1

lnn

n2
also converges. 11.3.12

Problem 11.3.24 Use the Direct Comparison Test to determine whether the infinite series
∞∑

n=4

√
n

n− 3

is convergent.

SOLUTION. For n ≥ 4,
√
n

n− 3
≥
√
n

n
=

1

n1/2
.

The series
∑∞

n=1
1

n1/2 is a p-series with p = 1/2 < 1¡ so it diverges, and it continues to diverge
if we drop the terms n = 1, 2, 3; that is,

∑∞
n=4

1
n1/2 also diverges.

By the Direct Comparison Test we can therefore conclude that the series
∑∞

n=4

√
n

n−3
diverges.

11.3.24
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Problem 11.3.42 Use the Limit Comparison Test to prove convergence of divergence if the infinite
series

∑∞
n=2

n3
√
n7+2n2+1

.

SOLUTION. Let an be the general term of our series. Observe that

an =
n3

√
n7 + 2n2 + 1

=
n−3n3

n−3
√
n7 + 2n2 + 1

=
1√

n+ 2n−4 + n−6

This suggests that we can compare our series with
∑∞

n=2 bn =
∑∞

n=2
1

n1/2 .

The ratio of the terms is

an

bn
=

1√
n+ 2n−4 + n−6

√
n

1
=

1√
1+ 2n−5 + n−7

Hence,

lim
n→∞ an

bn
= lim

n→∞ 1√
1+ 2n−5 + n−7

= 1

The p-series
∑∞

n=2
1

n1/2 diverges since p = 1/2 < 1. Therefore, our original series diverges.
11.3.42

Problem 11.3.44 Use the Limit Comparison Test to prove convergence or divergence of the infinite
series ∞∑

n=1

en + n

e2n − n2

SOLUTION. Let
an =

en + n

e2n − n2
=

en + n

(en − n)(en + n)
=

1

en − n
.

For large n,
1

en − n
≈ 1

en
= e−n,

so we apply the Limit Comparison Test with bn = e−n. We find

L = lim
n→∞ an

bn
= lim

n→∞
1

en−n

e−n
= lim

n→∞ en

en − n
= 1.

The series
∑∞

n=1 e
−n =

∑∞
n=1

(
1
e

)n
is a geometric series with r = 1

e
< 1, so it converges.

Because L exists, by the Limit Comparison Test we can conclude that the series
∑∞

n=1
en+n

e2n−n2

also converges. 11.3.44

Problem 11.3.54 Determine convergence or divergence using any method covered so far

∞∑
n=1

1

n2 + sinn
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SOLUTION. Apply the Limit Comparison Test with an = 1
n2+sin n

and bn = 1
n2 ;

L = lim
n→∞ an

bn
= lim

n→∞
1

n2+sin n
1
n2

= lim
n→∞ 1

1+ sin n
n2

= 1.

The series
∑∞

n=1
1
n2 is a convergent p-series. Because L exists, by the Limit Comparison Test

we can conclude that the series
∑∞

n=1
1

n2+sin n
also converges. 11.3.54

Problem 11.3.70 Determine convergence or divergence using any method covered so far

∞∑
n=1

sin(1/n)√
n

SOLUTION. Apply the Limit Comparison Test with an = sin(1/n)√
n

and bn = 1/n√
n

:

L = lim
n→∞ sin(1/n)√

n
·
√
n

1/n
= lim

n→∞ sin(1/n)
1/n

= lim
u→0

sinu

u
= 1

so that
∑

an and
∑

bn either both converge or both diverge. But

∞∑
n=1

bn =

∞∑
n=1

1/n√
n

=

∞∑
n=1

1

n3/2

is a convergent p-series. Thus
∑∞

n=1
sin(1/n)√

n
converges as well. 11.3.70
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