MATH 1910 Fall 2016

Problem 5.3.24 Evaluate the indefinite integral

$$\int \frac{12-z}{\sqrt{z}} \mathrm{d}z.$$

SOLUTION.

$$\int \frac{12-z}{\sqrt{z}} dz = \int (12z^{-1/2} - z^{-1/2}) dz = 24z^{1/2} - \frac{2}{3}z^{3/2} + C$$

Problem 5.3.38 Evaluate the indefinite integral

$$\int \sec(x+5)\tan(x+5)dx$$

SOLUTION.

$$\sec(x+5)\tan(x+5)dx = \sec(x+5) + C$$

Problem 5.3.52

Solve the initial value problem: $\frac{dz}{dt} = t^{-3/2}$, z(4) = -1.

SOLUTION. Integrate to find *z*:

$$z = \int t^{-3/2} dt = -2t^{-1/2} + C$$

and then use the initial condition z(4) = -1 to find *z*:

$$z(4) = -2(4)^{-1/2} + C = -1 \quad \Rightarrow C = 0.$$

Hence the solution is

$$z = -2t^{-1/2}.$$
 5.3.52

Problem 5.3.56

Solve the initial value problem $\frac{dy}{dz} = \sin 2z$, $y\left(\frac{\pi}{4}\right) = 4$.

5.3.24

5.3.38

SOLUTION. Since $\frac{dy}{dz} = \sin 2z$, we have

$$y = \int \sin 2z dz = -\frac{1}{2} \cos 2z + C.$$

Thus

$$4 = y\left(\frac{\pi}{4}\right) = 0 + C$$

so that C = 4. Therefore, $y = 4 - \frac{1}{2}\cos 2z$.

Problem 5.3.68

 $f''(\theta) = \cos \theta, f'\left(\frac{\pi}{2}\right) = 1, f\left(\frac{\pi}{2}\right) = 6.$

SOLUTION. Let $g(\theta) = f'(\theta)$. The problem statement gives

$$g'(\theta) = \cos \theta, \qquad g(\frac{\pi}{2}) = 1.$$

From $g'(\theta)$ we get $g(\theta) = \sin \theta + C$. From $g(\frac{\pi}{2}) = 1$ we get 1 + C = 1, so C = 0. Hence, $f'(\theta) = g(\theta) = \sin \theta$. From $f'(\theta)$ we get $f(\theta) = -\cos \theta + C$. From $f(\frac{\pi}{2}) = 6$ we get C = 6, so

$$f(\theta) = -\cos\theta + 6$$

5.3.68

Problem 5.3.76

Beginning at t = 0 (s) with initial velocity 4 (m/s), a particle moves in a straight line with acceleration $a(t) = 3t^{1/2}$ (m/s²). Find the distance traveled after 25 (s).

SOLUTION. Integrate a(t) to find the velocity v(t):

$$v(t) = \int 3t^{1/2} dt = 2t^{3/2} + C,$$

then use the initial condition v(0) = 4 to solve for C:

$$\nu(0) = 2(0)^{/2} + C = 4 \quad \Rightarrow C = 4.$$

Hence $v(t) = 2t^{3/2} + 4$. Next, integrate v(t) to find the displacement s(t):

$$s(t) = \int (2t^{3/2} + 4) dt = \frac{4}{5}t^{5/2} + 4t + D.$$

We may assume that initial displacement is zero, and so we can solve for D:

$$s(0) = \frac{4}{5}(0)^{5/2} + 4(0) + D \implies D = 0.$$

Finally, the distance traveled after 25 seconds is

$$s(25) = \frac{4}{5}(25)^{5/2} + 4(25) = 2600$$
 (m).
5.3.76

5.3.56

Problem 5.3.81

Verify the linearity properties of the indefinite integral stated in Theorem 3.

SOLUTION. To verify the Sum Rule, let F(x) and G(x) be any antiderivatives of f(x) and g(x), respectively. Because

$$\frac{d}{dx}(F(x) + G(x)) = \frac{d}{dx}F(x) + \frac{d}{dx}G(x) = f(x) + g(x),$$

it follows that F(x) + G(x) is an antiderivative of f(x) + g(x); i.e.,

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx.$$

To verify the Multiples Rule, again let F(x) be any antiderivative of f(x) and let c be a constant. Because

$$\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{cF}(x)) = \mathrm{c}\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{F}(x) = \mathrm{cf}(x)$$

it follows that cF(x) is an antiderivative of cf(x); i.e.,

$$\int (cf(x))dx = c \int f(x)dx.$$

5.3.81

Problem 5.4.24

Evaluate the integral using FTC I:

$$\int_{8/27}^{1} \frac{10t^{4/3} - 8t^{1/3}}{t^2} dt$$

SOLUTION.

$$\int_{8/27}^{1} \frac{10t^{4/3} - 8t^{1/3}}{t^2} dt$$

=
$$\int_{8/27}^{1} (10t^{-2/3} - 8t^{-5/3}) dt = 30t^{1/3} + 12t^{-2/3} \Big|_{8/27}^{1} = (30 + 12) - (20 + 27) = 5$$

5.4.24

Problem 5.4.36

Write the integral as a sum of integrals without absolute values and evaluate:

$$\int_0^3 \left| x^2 - 1 \right| \, \mathrm{d}x$$

~

SOLUTION.

$$\int_{0}^{3} \left| x^{2} - 1 \right| dx = \int_{0}^{1} (1 - x^{2}) dx = \int_{1}^{3} (x^{2} - 1) dx = (x - \frac{x^{3}}{3}) \Big|_{0}^{1} + (\frac{x^{3}}{3} - x) \Big|_{1}^{3} = (1 - \frac{1}{3}) - 0 + (9 - 3) - (\frac{1}{3} - 1) = \frac{22}{3}$$

$$\boxed{5.4.36}$$

Problem 5.4.50

Show that the area of the shaded parabolic arch in Figure 7 is equal to four-thirds the area of the triangle shown.

SOLUTION. We first calculate the area of the parabolic arch:

$$\begin{split} \int_{a}^{b} (x-a)(b-x)dx &= -\int_{a}^{b} (x-a)(x-b)dx \\ &= -\int_{a}^{b} (x^{2}-ax-bx+ab)dx \\ &= -\left(\frac{1}{3}x^{3}-\frac{a}{2}x^{2}-\frac{b}{2}x^{2}+abx\right)\Big|_{a}^{b} \\ &= -\frac{1}{6}\left(2x^{3}-3ax^{2}-3bx^{2}+6abx\right)\Big|_{a}^{b} \\ &= -\frac{1}{6}\left((2b^{3}-3ab^{2}-3b^{3}+6ab^{2})-(2a^{3}-3a^{3}-3ba^{2}+6a^{2}b)\right) \\ &= -\frac{1}{6}\left((-b^{3}+3ab^{2})-(-a^{3}+3a^{2}b)\right) \\ &= -\frac{1}{6}\left(a^{3}+3ab^{2}-3a^{2}b-b^{3}\right) \\ &= \frac{1}{6}(b-a)^{3} \end{split}$$

The indicated triangle has a base of length b - a and a height of

$$\left(\frac{a+b}{2}-a\right)\left(b-\frac{a+b}{2}\right)=\left(\frac{b-a}{2}\right)^2.$$

Thus, the area of the triangle is

$$\frac{1}{2}(b-a)\left(\frac{b-a}{2}\right)^2 = \frac{1}{8}(b-a)^3.$$

Finally, we note that

$$\frac{1}{6}(b-a)^3 = \frac{4}{3} \cdot \frac{1}{8}(b-a)^3,$$

5.4.50

as required.

Problem 5.4.52

(a) Apply the Comparison Theorem (Theorem 5 in Section 5.2) to the inequality $\sin x \le x$ (valid for all $x \ge 0$) to prove that

$$1 - \frac{x^2}{2} \le \cos x \le 1.$$

(b) Apply it again to prove that

$$x - \frac{x^3}{6} \le \sin x \le x$$
 (for $x \ge 0$).

(c) Verify these inqualities for x = 0.3.

SOLUTION.

(a) We have

$$\int_0^x \sin t \, dt = -\cos t \Big|_0^x = -\cos x + 1$$

and

$$\int_{0}^{x} t dt = \frac{1}{2} t^{2} \big|_{0}^{x} = \frac{1}{2} x^{2}.$$

Hence,

$$-\cos x+1\leq \frac{x^2}{2}.$$

Solving, this gives $\cos x \ge 1 - \frac{x^2}{2}$. Then $\cos x \le 1$ follows automatically.

(b) The previous part gives us $1 - \frac{t^2}{2} \le \cos t \le 1$, for t > 0. Theorem 5 gives us, after integrating over the interval [0, x],

$$x-\frac{x^3}{6}\leq \sin x\leq x.$$

(c) Substituting x = 0.3 into the inequalities obtained in (a) and (b) yields

$$0.955 \le 0.955336489 \le 1$$
 and $0.2955 \le 0.2955202069 \le 0.3$,

respectively.

Problem 5.5.1

Write the area function of f(x) = 2x + 4 with lower limit a = -2 as an integral and find a formula for it.

SOLUTION. Let f(x) = 2x + 4. The area function with lower limit a = -2 is

$$A(x) = \int_{a}^{x} f(t)dt = \int_{-2}^{x} (2t+4)dt$$

Carrying out the integration, we find

$$\int_{-2}^{x} (2t+4)dt = (t^{2}+4t)\Big|_{-2}^{x} = (x^{2}+4x) - ((-2)^{2}+4(-2)) = x^{2}+4x+4 = (x+2)^{2}$$

Therefore, $A(x) = (x + 2)^2$

Problem 5.5.3

Let $G(x) = \int_{1}^{x} (t^2 - 2) dt$. Calculate G(1), G'(1), and G'(2). Then find a formula for G(x).

SOLUTION. Let $G(x) = \int_{1}^{x} (t^2 - 2) dt$. Then $G(1) = \int_{1}^{1} (t^2 - 2) dt = 0$. Moreover, $G'(x) = x^2 - 2$, so that G'(1) = -1 and G'(2) = 2. Finally,

$$G(x) = \int_{1}^{x} (t^{2} - 2)dt = \left(\frac{t^{3}}{3} - 2x\right)\Big|_{1}^{x} = \left(\frac{x^{3}}{3} - 2x\right) - \left(\frac{1}{3} - 2\right) = \frac{1}{3}x^{3} - 2x + \frac{5}{3}$$

Problem 5.5.30 Calculate the derivative $\frac{d}{dx} \int_{1}^{1/x} \cos^3 t \, dt$.

SOLUTION. By the Chain Rule and the FTC,

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{1}^{1/x} \cos^3 t \, \mathrm{d}t = \cos^3 \left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = -\frac{1}{x^2} \cos^3 \left(\frac{1}{x}\right).$$

Problem 5.5.32

Calculate the derivative: $\frac{d}{dx} \int_{x^2}^{x^4} \sqrt{t} dt$.

5.4	.52

5.5.1

5.5.30

5.5.3

SOLUTION. Let

$$F(x) = \int_{x^2}^{x^4} \sqrt{t} dt = \int_0^{x^4} \sqrt{t} dt - \int_0^{x^2} \sqrt{t} dt.$$

Applying the Chain Rule combined with FTC, we have

$$F'(x) = \sqrt{(x^4)}.4x^3 - \sqrt{(x^2)}.2x = 4x^5 - 2x |x|.$$

5.5.32

Problem 5.5.44

Match the property of A with the corresponding property of the graph of f. Assume f is differentiable.

Area function A

- (a) A is decreasing.
- (b) A has a local maximum.
- (c) A is concave up.
- (*d*) A goes from concave up to concave down.

Graph of f

- *(i) Lies below the* x*-axis.*
- *(ii) Crosses the* x*-axis from positive to negative.*
- (iii) Has a local maximum.
- *(iv)* f *is increasing.*

SOLUTION. Let $A(x) = \int_{a}^{x} f(t) dt$ be an area function of f. Then A'(x) = f(x) and A''(x) = f'(x).

- (a) A is decreasing when A'(x) = f(x) < 0, that is, when f lies below the x-axis. This is choice (i).
- (b) A has a local maximum at x_0 when A'(x) = f(x) changes sign from + to 0 to as x increases through x_0 , that is, when f crosses the x-axis from positive to negative. This is choice (ii).
- (c) A is concave up when A''(x) = f'(x) > 0, that is, when f is increasing. This corresponds to choice (iv).
- (d) A goes from concave up to concave down at x_0 when A''(x) = f'(x) changes sign from + to 0 to 0 as x increases through x_0 , that is, when f has a local maximum at x_0 . This is choice (iii).

5.5.44

Problem 5.5.48

Figure 13 shows the graph of $f(x) = x \sin x$. *Let* $F(x) = \int_0^x t \sin t dt$.

(a) Locate the local max and absolute max of F on $[0, 3\pi]$.

(b) Justify graphically: F has precisely one zero in $[\pi, 2\pi]$.

(c) How many zeros does F have in $[0, 3\pi]$?

(d) Find the inflection points of F on $[0, 3\pi]$. For each one, state whether the concavity changes from up to down or from down to up.

FIGURE 13 Graph of $f(x) = x \sin x$.

SOLUTION. Let $F(x) = \int_0^x tsintdt$. A graph of f(x) = xsinx is depicted in Figure 13. Note that F'(x) = f(x) and F''(x) = f'(x).

(a) For F to have a local maximum at $x_0 \in (0, 3\pi)$ we must have $F'(x_0) = f(x_0) = 0$ and F' = f must change sign from positive to 0 to negative as x increases through x_0 . This occurs at $x = \pi$. . The absolute maximum of F on $[0, 3\pi]$ occurs at $x = 3\pi$ since (from the figure) the signed area between x = 0 and x = c is greatest for $x = c = 3\pi$.

(b) At $x = \pi$, the value of F is positive since f(x) > 0 on $(0,\pi)$. As x increases along the interval $[\pi, 2\pi]$, we see that F decreases as the negatively signed area accumulates. Eventually the additional negatively signed area "outweighs" the prior positively signed area and F attains the value 0, say at $b \in (\pi, 2\pi)$. Thereafter, on $(b, 2\pi)$, we see that f is negative and thus F becomes and continues to be negative as the negatively signed area accumulates. Therefore, F takes the value 0 exactly once in the interval $[\pi, 2\pi]$.

(c) F has two zeroes in $[0, 3\pi]$. One is described in part (b) and the other must occur in the interval $[2\pi, 3\pi]$ because F(x) < 0 at $x = 2\pi$ but clearly the positively signed area over $[2\pi, 3\pi]$ is greater than the previous negatively signed area.

(d) Since f is differentiable, we have that F is twice differentiable on I. Thus F has an inflection point at x_0 provided $F''(x_0) = f'(x_0) = 0$ and F''(x) = f'(x) changes sign at x_0 . If F'' = f' changes sign from positive to 0 to negative at x_0 , then f has a local maximum at x_0 . There is clearly such a value x_0 in the figure in the interval $[\pi/2, \pi]$ and another around $5\pi/2$. Accordingly, F has two inflection points where F changes from concave up to concave down. If F'' = f' changes sign from negative to 0 to positive at x_0 , then f has a local minimum at x_0 . From the figure, there is such an x_0 around $3\pi/2$; so F has one inflection point where F(x) changes from concave up.

5.5.48