Homework Solutions

Problem 5.3.24 Evaluate the indefinite integral

$$
\int \frac{12-z}{\sqrt{z}} \mathrm{~d} z
$$

SOLUTION.

$$
\int \frac{12-z}{\sqrt{z}} \mathrm{~d} z=\int\left(12 z^{-1 / 2}-z^{-1 / 2}\right) \mathrm{d} z=24 z^{1 / 2}-\frac{2}{3} z^{3 / 2}+C
$$

Problem 5.3.38 Evaluate the indefinite integral

$$
\int \sec (x+5) \tan (x+5) d x
$$

SOLUTION.

$$
\int \sec (x+5) \tan (x+5) d x=\sec (x+5)+C
$$

Problem 5.3.52

Solve the initial value problem: $\frac{\mathrm{d} z}{\mathrm{dt}}=\mathrm{t}^{-3 / 2}, \mathrm{z}(4)=-1$.
SOLUTION. Integrate to find z :

$$
z=\int \mathrm{t}^{-3 / 2} \mathrm{dt}=-2 \mathrm{t}^{-1 / 2}+\mathrm{C}
$$

and then use the initial condition $z(4)=-1$ to find z :

$$
z(4)=-2(4)^{-1 / 2}+C=-1 \quad \Rightarrow C=0
$$

Hence the solution is

$$
z=-2 t^{-1 / 2}
$$

Problem 5.3.56

Solve the initial value problem $\frac{d y}{d z}=\sin 2 z, y\left(\frac{\pi}{4}\right)=4$.

SOlution. Since $\frac{\mathrm{d} y}{\mathrm{~d} z}=\sin 2 z$, we have

$$
y=\int \sin 2 z \mathrm{~d} z=-\frac{1}{2} \cos 2 z+C .
$$

Thus

$$
4=y\left(\frac{\pi}{4}\right)=0+C
$$

so that $C=4$. Therefore, $y=4-\frac{1}{2} \cos 2 z$.

Problem 5.3.68

$f^{\prime \prime}(\theta)=\cos \theta, f^{\prime}\left(\frac{\pi}{2}\right)=1, f\left(\frac{\pi}{2}\right)=6$.
SOLUTION. Let $g(\theta)=f^{\prime}(\theta)$. The problem statement gives

$$
g^{\prime}(\theta)=\cos \theta, \quad g\left(\frac{\pi}{2}\right)=1 .
$$

From $g^{\prime}(\theta)$ we get $g(\theta)=\sin \theta+C$. From $g\left(\frac{\pi}{2}\right)=1$ we get $1+C=1$, so $C=0$. Hence, $f^{\prime}(\theta)=g(\theta)=\sin \theta$. From $f^{\prime}(\theta)$ we get $f(\theta)=-\cos \theta+C$. From $f\left(\frac{\pi}{2}\right)=6$ we get $C=6$, so

$$
f(\theta)=-\cos \theta+6 .
$$

Problem 5.3.76

Beginning at $\mathrm{t}=0(\mathrm{~s})$ with initial velocity $4(\mathrm{~m} / \mathrm{s})$, a particle moves in a straight line with acceleration $a(t)=3 t^{1 / 2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$. Find the distance traveled after $25(\mathrm{~s})$.

SOLUTION. Integrate $a(t)$ to find the velocity $v(t)$:

$$
v(\mathrm{t})=\int 3 \mathrm{t}^{1 / 2} \mathrm{dt}=2 \mathrm{t}^{3 / 2}+\mathrm{C}
$$

then use the initial condition $v(0)=4$ to solve for C :

$$
v(0)=2(0)^{/ 2}+\mathrm{C}=4 \quad \Rightarrow \mathrm{C}=4 .
$$

Hence $v(\mathrm{t})=2 \mathrm{t}^{3 / 2}+4$. Next, integrate $v(\mathrm{t})$ to find the displacement $s(\mathrm{t})$:

$$
s(t)=\int\left(2 t^{3 / 2}+4\right) d t=\frac{4}{5} t^{5 / 2}+4 t+D .
$$

We may assume that initial displacement is zero, and so we can solve for D:

$$
s(0)=\frac{4}{5}(0)^{5 / 2}+4(0)+\mathrm{D} \quad \Rightarrow \mathrm{D}=0
$$

Finally, the distance traveled after 25 seconds is

$$
s(25)=\frac{4}{5}(25)^{5 / 2}+4(25)=2600(\mathrm{~m}) .
$$

Problem 5.3.81

Verify the linearity properties of the indefinite integral stated in Theorem 3.

Solution. To verify the Sum Rule, let $F(x)$ and $G(x)$ be any antiderivatives of $f(x)$ and $g(x)$, respectively. Because

$$
\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{~F}(\mathrm{x})+\mathrm{G}(\mathrm{x}))=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{~F}(\mathrm{x})+\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{G}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})
$$

it follows that $F(x)+G(x)$ is an antiderivative of $f(x)+g(x)$; i.e.,

$$
\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x
$$

To verify the Multiples Rule, again let $F(x)$ be any antiderivative of $f(x)$ and let c be a constant. Because

$$
\frac{d}{d x}(c F(x))=c \frac{d}{d x} F(x)=c f(x)
$$

it follows that $\mathrm{cF}(x)$ is an antiderivative of $\mathrm{cf}(\mathrm{x})$; i.e.,

$$
\int(c f(x)) d x=c \int f(x) d x
$$

Problem 5.4.24

Evaluate the integral using FTC I:

$$
\int_{8 / 27}^{1} \frac{10 t^{4 / 3}-8 t^{1 / 3}}{t^{2}} d t
$$

SOLUTION.

$$
\int_{8 / 27}^{1} \frac{10 t^{4 / 3}-8 t^{1 / 3}}{t^{2}} d t
$$

$=$

$$
\int_{8 / 27}^{1}\left(10 t^{-2 / 3}-8 t^{-5 / 3}\right) d t=30 t^{1 / 3}+\left.12 t^{-2 / 3}\right|_{8 / 27} ^{1}=(30+12)-(20+27)=5
$$

Problem 5.4.36

Write the integral as a sum of integrals without absolute values and evaluate:

$$
\int_{0}^{3}\left|x^{2}-1\right| d x
$$

Solution.

$$
\int_{0}^{3}\left|x^{2}-1\right| \mathrm{d} x=\int_{0}^{1}\left(1-x^{2}\right) \mathrm{d} x=\int_{1}^{3}\left(x^{2}-1\right) \mathrm{d} x=\left.\left(x-\frac{x^{3}}{3}\right)\right|_{0} ^{1}+\left.\left(\frac{x^{3}}{3}-x\right)\right|_{1} ^{3}=\left(1-\frac{1}{3}\right)-0+(9-3)-\left(\frac{1}{3}-1\right)=\frac{22}{3}
$$

Problem 5.4.50

Show that the area of the shaded parabolic arch in Figure 7 is equal to four-thirds the area of the triangle shown.

FIGURE 7 Graph of $y=(x-a)(b-x)$.

SOlution. We first calculate the area of the parabolic arch:

$$
\begin{aligned}
\int_{a}^{b}(x-a)(b-x) d x & =-\int_{a}^{b}(x-a)(x-b) d x \\
& =-\int_{a}^{b}\left(x^{2}-a x-b x+a b\right) d x \\
& =-\left.\left(\frac{1}{3} x^{3}-\frac{a}{2} x^{2}-\frac{b}{2} x^{2}+a b x\right)\right|_{a} ^{b} \\
& =-\left.\frac{1}{6}\left(2 x^{3}-3 a x^{2}-3 b x^{2}+6 a b x\right)\right|_{a} ^{b} \\
& =-\frac{1}{6}\left(\left(2 b^{3}-3 a b^{2}-3 b^{3}+6 a b^{2}\right)-\left(2 a^{3}-3 a^{3}-3 b a^{2}+6 a^{2} b\right)\right) \\
& =-\frac{1}{6}\left(\left(-b^{3}+3 a b^{2}\right)-\left(-a^{3}+3 a^{2} b\right)\right. \\
& =-\frac{1}{6}\left(a^{3}+3 a b^{2}-3 a^{2} b-b^{3}\right) \\
& =\frac{1}{6}(b-a)^{3}
\end{aligned}
$$

The indicated triangle has a base of length $b-a$ and a height of

$$
\left(\frac{a+b}{2}-a\right)\left(b-\frac{a+b}{2}\right)=\left(\frac{b-a}{2}\right)^{2}
$$

Thus, the area of the triangle is

$$
\frac{1}{2}(b-a)\left(\frac{b-a}{2}\right)^{2}=\frac{1}{8}(b-a)^{3} .
$$

Finally, we note that

$$
\frac{1}{6}(b-a)^{3}=\frac{4}{3} \cdot \frac{1}{8}(b-a)^{3}
$$

as required.

Problem 5.4.52

(a) Apply the Comparison Theorem (Theorem 5 in Section 5.2) to the inequality $\sin x \leq x$ (valid for all $x \geq 0$) to prove that

$$
1-\frac{x^{2}}{2} \leq \cos x \leq 1
$$

(b) Apply it again to prove that

$$
x-\frac{x^{3}}{6} \leq \sin x \leq x \quad(\text { for } x \geq 0)
$$

(c) Verify these inqualities for $x=0.3$.

SOLUTION.

(a) We have

$$
\int_{0}^{x} \sin t d t=-\left.\cos t\right|_{0} ^{x}=-\cos x+1
$$

and

$$
\int_{0}^{x} t d t=\left.\frac{1}{2} t^{2}\right|_{0} ^{x}=\frac{1}{2} x^{2} .
$$

Hence,

$$
-\cos x+1 \leq \frac{x^{2}}{2}
$$

Solving, this gives $\cos x \geq 1-\frac{x^{2}}{2}$. Then $\cos x \leq 1$ follows automatically.
(b) The previous part gives us $1-\frac{\mathrm{t}^{2}}{2} \leq \cos \mathrm{t} \leq 1$, for $\mathrm{t}>0$. Theorem 5 gives us, after integrating over the interval $[0, x]$,

$$
x-\frac{x^{3}}{6} \leq \sin x \leq x
$$

(c) Substituting $x=0.3$ into the inequalities obtained in (a) and (b) yeilds

$$
0.955 \leq 0.955336489 \leq 1 \quad \text { and } \quad 0.2955 \leq 0.2955202069 \leq 0.3
$$

respectively.

Problem 5.5.1

Write the area function of $f(x)=2 x+4$ with lower limit $a=-2$ as an integral and find a formula for it.

SOLUTION. Let $\mathrm{f}(\mathrm{x})=2 x+4$. The area function with lower limit $\mathrm{a}=-2$ is

$$
A(x)=\int_{a}^{x} f(t) d t=\int_{-2}^{x}(2 t+4) d t
$$

Carrying out the integration, we find

$$
\int_{-2}^{x}(2 t+4) d t=\left.\left(t^{2}+4 t\right)\right|_{-2} ^{x}=\left(x^{2}+4 x\right)-\left((-2)^{2}+4(-2)\right)=x^{2}+4 x+4=(x+2)^{2}
$$

Therefore, $A(x)=(x+2)^{2}$

> | 5.5 .1 |
| :--- |

Problem 5.5.3

Let $\mathrm{G}(\mathrm{x})=\int_{1}^{x}\left(\mathrm{t}^{2}-2\right) d t$. Calculate $\mathrm{G}(1), \mathrm{G}^{\prime}(1)$, and $\mathrm{G}^{\prime}(2)$. Then find a formula for $\mathrm{G}(\mathrm{x})$.
Solution. Let $G(x)=\int_{1}^{x}\left(t^{2}-2\right) d t$. Then $G(1)=\int_{1}^{1}\left(t^{2}-2\right) d t=0$. Moreover, $G^{\prime}(x)=x^{2}-2$, so that $\mathrm{G}^{\prime}(1)=-1$ and $\mathrm{G}^{\prime}(2)=2$. Finally,

$$
\mathrm{G}(\mathrm{x})=\int_{1}^{x}\left(\mathrm{t}^{2}-2\right) \mathrm{dt}=\left.\left(\frac{\mathrm{t}^{3}}{3}-2 x\right)\right|_{1} ^{x}=\left(\frac{x^{3}}{3}-2 x\right)-\left(\frac{1}{3}-2\right)=\frac{1}{3} x^{3}-2 x+\frac{5}{3}
$$

$$
\begin{array}{|l|}
\hline 5.5 .3 \\
\hline
\end{array}
$$

Problem 5.5.30 Calculate the derivative $\frac{\mathrm{d}}{\mathrm{dx}} \int_{1}^{1 / \mathrm{x}} \cos ^{3} \mathrm{tdt}$.
Solution. By the Chain Rule and the FTC,

$$
\frac{d}{d x} \int_{1}^{1 / x} \cos ^{3} t d t=\cos ^{3}\left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)=-\frac{1}{x^{2}} \cos ^{3}\left(\frac{1}{x}\right)
$$

Problem 5.5.32

Calculate the derivative: $\frac{\mathrm{d}}{\mathrm{dx}} \int_{x^{2}}^{x^{4}} \sqrt{\mathrm{t}} \mathrm{dt}$.

Solution. Let

$$
F(x)=\int_{x^{2}}^{x^{4}} \sqrt{t} d t=\int_{0}^{x^{4}} \sqrt{t} d t-\int_{0}^{x^{2}} \sqrt{t} d t .
$$

Applying the Chain Rule combined with FTC, we have

$$
F^{\prime}(x)=\sqrt{\left(x^{4}\right)} \cdot 4 x^{3}-\sqrt{\left(x^{2}\right)} \cdot 2 x=4 x^{5}-2 x|x| .
$$

Problem 5.5.44

Match the property of A with the corresponding property of the graph of f. Assume f is differentiable.

Area function A

(a) A is decreasing.
(b) A has a local maximum.
(c) A is concave up.
(d) A goes from concave up to concave down.

Graph of f

(i) Lies below the x-axis.
(ii) Crosses the x-axis from positive to negative.
(iii) Has a local maximum.
(iv) f is increasing.

SOLUTION. Let $A(x)=\int_{a}^{x} f(t) d t$ be an area function of f. Then $A^{\prime}(x)=f(x)$ and $A^{\prime \prime}(x)=f^{\prime}(x)$.
(a) A is decreasing when $A^{\prime}(x)=f(x)<0$, that is, when f lies below the x-axis. This is choice (i).
(b) A has a local maximum at x_{0} when $A^{\prime}(x)=f(x)$ changes sign from + to 0 to - as x increases through x_{0}, that is, when f crosses the x-axis from positive to negative. This is choice (ii).
(c) A is concave up when $A^{\prime \prime}(x)=f^{\prime}(x)>0$, that is, when f is increasing. This corresponds to choice (iv).
(d) A goes from concave up to concave down at x_{0} when $A^{\prime \prime}(x)=f^{\prime}(x)$ changes sign from + to 0 to 0 as x increases through x_{0}, that is, when f has a local maximum at x_{0}. This is choice (iii).

Problem 5.5.48

Figure 13 shows the graph of $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$. Let $\mathrm{F}(\mathrm{x})=\int_{0}^{\mathrm{x}}$ tsintdt.
(a) Locate the local max and absolute max of F on $[0,3 \pi]$.
(b) Justify graphically: F has precisely one zero in $[\pi, 2 \pi]$.
(c) How many zeros does F have in $[0,3 \pi]$?
(d) Find the inflection points of F on $[0,3 \pi]$. For each one, state whether the concavity changes from up to down or from down to up.

FIGURE 13 Graph of $f(x)=x \sin x$.

Solution. Let $\mathrm{F}(\mathrm{x})=\int_{0}^{\mathrm{x}}$ tsintdt. A graph of $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$ is depicted in Figure 13. Note that $F^{\prime}(x)=f(x)$ and $F^{\prime \prime}(x)=f^{\prime}(x)$.
(a) For F to have a local maximum at $x_{0} \in(0,3 \pi)$ we must have $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)=0$ and $F^{\prime}=f$ must change sign from positive to 0 to negative as x increases through x_{0}. This occurs at $x=\pi$. The absolute maximum of F on $[0,3 \pi]$ occurs at $x=3 \pi$ since (from the figure) the signed area between $x=0$ and $x=c$ is greatest for $x=c=3 \pi$.
(b) At $x=\pi$, the value of F is positive since $f(x)>0$ on $(0, \pi)$. As x increases along the interval $[\pi, 2 \pi]$, we see that F decreases as the negatively signed area accumulates. Eventually the additional negatively signed area "outweighs" the prior positively signed area and F attains the value 0 , say at $b \in(\pi, 2 \pi)$. Thereafter, on $(b, 2 \pi)$, we see that f is negative and thus F becomes and continues to be negative as the negatively signed area accumulates. Therefore, F takes the value 0 exactly once in the interval $[\pi, 2 \pi]$.
(c) F has two zeroes in $[0,3 \pi]$. One is described in part (b) and the other must occur in the interval $[2 \pi, 3 \pi]$ because $\mathrm{F}(x)<0$ at $x=2 \pi$ but clearly the positively signed area over $[2 \pi, 3 \pi]$ is greater than the previous negatively signed area.
(d) Since f is differentiable, we have that F is twice differentiable on I. Thus F has an inflection point at x_{0} provided $F^{\prime \prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0$ and $F^{\prime \prime}(x)=f^{\prime}(x)$ changes sign at x_{0}. If $F^{\prime \prime}=f^{\prime}$ changes sign from positive to 0 to negative at x_{0}, then f has a local maximum at x_{0}. There is clearly such a value x_{0} in the figure in the interval $[\pi / 2, \pi]$ and another around $5 \pi / 2$. Accordingly, F has two inflection points where F changes from concave up to concave down. If $F^{\prime \prime}=f^{\prime}$ changes sign from negative to 0 to positive at x_{0}, then f has a local minimum at x_{0}. From the figure, there is such an x_{0} around $3 \pi / 2$; so F has one inflection point where $F(x)$ changes from concave down to concave up.

