Problem 6.4.22 Sketch the region enclosed by $x=\frac{1}{4} y+1, x=3-\frac{1}{4} y$, and $y=0$. Use the Shell Method to calculate the volume of rotation about the x-axis

Solution. The first equation is a line with positive slope and x-intercept $x=1$, the second is a line with negative slope and x-intercept $x=3$. These lines intersect at $\frac{1}{4} y+1=3-\frac{1}{4} y$ or $y=4$. Then, our picture looks as follows:

Parallel to the x-axis we have shells with thickness dy, radius y, and height $3-\frac{y}{4}-\left(1+\frac{y}{4}\right)=$ $2-\frac{y}{2}$. Thus, the volume of the solid is

$$
\begin{gathered}
\int_{0}^{4} 2 \pi(\text { radius })(\text { height of shell }) d y=2 \pi \int_{0}^{4} y\left(2-\frac{y}{2}\right) d y=2 \pi \int_{0}^{4} 2 y-\frac{y^{2}}{2} d y \\
=\left.2 \pi\left(y^{2}-\frac{y^{3}}{6}\right)\right|_{0} ^{4}=2 \pi\left(16-\frac{64}{6}\right)=\pi\left(32-\frac{64}{3}\right)=\frac{32 \pi}{3}
\end{gathered}
$$

Problem 6.4.29 Use both the Shell and Disk Methods to calculate the volume obtained by rotating the region under the graph of $f(x)=8-x^{3}$ from $0 \leq x \leq 2$ about

- the x-axis
- the y-axis

SOLUTION. This region to be rotated is as follows:

- About the x-axis, the disk method gives disks of thickness $d x$ and radius $y=8-x^{3}$. Thus the volume is

$$
\int_{0}^{2} \pi\left(8-x^{3}\right)^{2} d x=\pi \int_{0}^{2} 64-16 x^{3}+x^{6} d x=\left.\pi\left(64 x-4 x^{4}+\frac{x^{7}}{7}\right)\right|_{0} ^{2}=\frac{576 \pi}{7}
$$

Using the shell method, we get shells with thickness $d y$, radius y, and height $x=(8-y)^{\frac{1}{3}}$. Thus, the volume is

$$
\int_{0}^{8} 2 \pi y(8-y)^{\frac{1}{3}} d y
$$

Substituting $u=8-y$ and $d u=-d y$ we get

$$
-2 \pi \int_{8}^{0}(8-u) u^{\frac{1}{3}} d u=-2 \pi \int_{8}^{0} 8 u^{\frac{1}{3}}-u^{\frac{4}{3}} d u=-\left.2 \pi\left(6 u^{\frac{4}{3}}-\frac{3 u^{\frac{7}{3}}}{7}\right)\right|_{8} ^{0}=\frac{576 \pi}{7}
$$

- About the y-axis, disks have thickness $d y$ and radius $x=(8-y)^{\frac{1}{3}}$ so we get volume

$$
\int_{0}^{8} \pi\left((8-y)^{\frac{1}{3}}\right)^{2} \mathrm{~d} y=\pi \int_{0}^{8}(8-y)^{\frac{2}{3}} \mathrm{~d} y=\left.\pi\left(-\frac{3}{5}(8-y)^{\frac{5}{3}}\right)\right|_{0} ^{8}=\frac{96 \pi}{5}
$$

Using the shell method, we get shells with thickness $d x$, radius x and height $y=8-x^{3}$. Thus the volume is

$$
\int_{0}^{2} 2 \pi x\left(8-x^{3}\right) d x=2 \pi \int_{0}^{2} 8 x-x^{4} d x=\left.2 \pi\left(4 x^{2}-\frac{x^{5}}{5}\right)\right|_{0} ^{2}=\frac{96 \pi}{5}
$$

Problem 6.4.57 Use the Shell Method to find the volume of the torus obtained by rotating the circle $(x-a)^{2}+y^{2}=b^{2}$ about the y-axis (assume $a>b$)

Solution. Our picture is again:

FIGURE 15 Torus obtained by rotating a circle about the y-axis.

Then we have cylinders with radius x going from $x=a-b$ to $x=a+b$. Each of these cylinders has height given by twice $y=\sqrt{b^{2}-(x-a)^{2}}$ so we have volume:

$$
\int_{a-b}^{a+b} 2 \pi x\left(2 \sqrt{b^{2}-(x-a)^{2}}\right) d x=4 \pi \int_{a-b}^{a+b} x \sqrt{b^{2}-(x-a)^{2}} d x
$$

Substituting $u=x-a$ and $d u=d x$ we get

$$
4 \pi \int_{-b}^{b}(u+a) \sqrt{b^{2}-u^{2}} d u=4 \pi \int_{-b}^{b} u \sqrt{b^{2}-u^{2}} d u+4 \pi a \int_{-b}^{b} \sqrt{b^{2}-u^{2}} d u
$$

Note that $u \sqrt{b^{2}-u^{2}}$ is an odd function $\left(u \sqrt{b^{2}-u^{2}}=-\left((-u) \sqrt{b^{2}-(-u)^{2}}\right)\right.$ so it is 0 integrated about the symmetric interval [-b,b] (or use substitution $u=b \sin (\theta), d u=b \cos (\theta) d \theta$ to show this fact).

Then the volume is just $4 \pi a \int_{-b}^{b} \sqrt{b^{2}-u^{2}} d u$. Since the integral here is again half of a circle of radius b, we have that the volume is $4 \pi a\left(\frac{\pi b^{2}}{2}\right)=2 \pi^{2} a b^{2}$.

Problem 6.4.60 The surface area of a sphere of radius r is $4 \pi r^{2}$. Use this to derive the formula for the volume V of a sphere of radius R in a new way

- Show that the volume of a thin spherical shell of inner radius r and thickness $\Delta \mathrm{r}$ is approximately $4 \pi r^{2} \Delta r$
- Approximate V by decomposing the sphere of radius R into N thin spherical shells of thickness $\Delta \mathrm{r}=\frac{\mathrm{R}}{\mathrm{N}}$
- Show that the approximation is a Riemann sum that converges to an integral. Evaluate the integral

SOLUTION. - The volume of such a spherical shell is approximately the surface area at the inner radius times the thickness, $4 \pi r^{2} \Delta r$. This is not exact because as we move Δr away from the inner radius r, the surface area of these spheres actually involves a slightly larger radius than r.

- Now we estimate V by decomposing the sphere into N spherical shells. The boundary points of these shells are given by $x_{k}=\frac{R}{N} k, k=0, . ., N$ (e.g. the first shell goes from $x_{0}=0$ to $x_{1}=\frac{R}{N}$ and the last shell goes from $x_{N-1}=\frac{N-1}{N} R$ to $x_{N}=R$). Then, each shell has volume approximately equal to surface area at the outer radius times the thickness (e.g. the first shell has volume approximately $\left.4 \pi\left(x_{1}\right)^{2} \Delta r=4 \pi\left(\frac{R}{N}\right)^{2} \frac{R}{N}\right)$. This will give us an overestimation, for the same reason that part a described an underestimation.

Thus, we can describe the approximate volume of the whole sphere as:

$$
\sum_{k=1}^{N} 4 \pi\left(x_{k}\right)^{2} \Delta r=\sum_{k=1}^{N} 4 \pi\left(\frac{R}{N} k\right)^{2} \frac{R}{N}=4 \pi\left(\frac{R}{N}\right)^{3} \sum_{k=1}^{N} k^{2}=4 \pi R^{3} \frac{N(N+1)(2 N+1)}{6 N^{3}}=\frac{2}{3} \pi R^{3} \frac{\left(2 N^{3}+3 N^{2}+N\right)}{N^{3}}
$$

- By definition, this is a Riemann sum partitioned by $0=x_{0}<x_{1} \cdots<x_{N}=R$ and sampled at x_{1}, \ldots, x_{N}. Then, as we take the limit as N goes to infinity Δr becomes $d r, x_{k}$ becomes r, and we now take r everywhere in $[0, R]$. Thus we obtain

$$
\int_{0}^{R} 4 \pi r^{2} d r=\left.4 \pi\left(\frac{r^{3}}{3}\right)\right|_{0} ^{R}=4 \pi \frac{R^{3}}{3}
$$

Problem 6.5.19 Calculate the work (in joules) required to pump all of the water out of the full tank below. Distances are in meters, the density of water is $1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

FIGURE 9

SOLUTION. The work against gravity to lift each layer of water of thickness dy is F (distance lifted) $=$ $\mathrm{mg}($ distance $)=\operatorname{area} * \mathrm{dy} *$ density $* \mathrm{~g} *$ (distance). If we define the origin at the center of the hemisphere and let the positive y-axis point downward then a layer at depth y has radius $\sqrt{100-y^{2}}$ by the Pythagorean theorem and thus area $\pi\left(100-y^{2}\right) \mathrm{m}^{2}$. This layer will
have to be lifted $y+2$ meters (because of the spout). Hence the work to lift this layer is $\pi\left(100-y^{2}\right) * 1000 * 9.8 *(y+2) * d y$.

So the total work to lift all layers is:

$$
\begin{aligned}
\int_{y=0}^{10} 9800 \pi\left(100-y^{2}\right)(y+2) d y & =9800 \pi \int_{0}^{10} 100 y+200-y^{3}-2 y^{2}=\left.9800 \pi\left(50 y^{2}+200 y-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}\right)\right|_{0} ^{10} \\
& =9800 \pi\left(\frac{11500}{3}\right)=\frac{112700000}{3} \pi \text { joules }
\end{aligned}
$$

Problem 6.5.20

Conical tank in Figure 10; water exits through the spout.

Solution. Place the origin at the vertex of the inverted cone, and let the positive y-axis point upward. Consider a layer of water at a height of y meters.

From similar triangles, the area of the layer is

$$
\pi\left(\frac{\mathrm{y}}{2}\right)^{2} \mathrm{~m}^{2}
$$

so the volume is

$$
\pi\left(\frac{y}{2}\right)^{2} \delta y m^{3}
$$

Thus the weight of one layer is

$$
9800 \pi\left(\frac{y}{2}\right)^{2} \delta y N
$$

The layer must be lifted $12-y$ meters, so the total work needed to empty the tank is

$$
\int_{0}^{10} 9800 \pi\left(\frac{y}{2}\right)^{2}(12-y) \mathrm{dy}=\pi\left(3.675 \times 10^{6}\right) \mathrm{J} \approx 1.155 \times 10^{7} \mathrm{~J}
$$

Problem 6.5.27 Calculate the work required to life a 10-m chain over the side of a building. Assume the chain has density $8 \mathrm{~kg} / \mathrm{m}$.

FIGURE 13 The small segment of the chain of length Δy located y meters from the top is lifted through a vertical distance y.

SOLUTION. We again consider the work against gravity to lift a length dy segment of chain (y meters down the rope). This is given by mg (distance). Here, the mass of the dy meter portion of chain is $8 * \mathrm{dy} \frac{\mathrm{m}(\mathrm{kg})}{\mathrm{m}}$. This segment will be lifted y meters. Thus work to lift this segment is $8 * d y * 9.8 * y$. Then to lift all segments of the rope, starting from the top (0 meters down the rope) and ending at the bottom (10 meters down the rope), we have:

$$
9.8 * 8 \int_{y=0}^{10} y d y=\left.78.4\left(\frac{y^{2}}{2}\right)\right|_{0} ^{10}=3920 \text { joules }
$$

Problem 6.5.35 The gravitational force between two objects of mass m and M, separated by a distance r, has magnitude $\frac{G M m}{\mathrm{r}^{2}}$ where $\mathrm{G}=6.67 * 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-1}$.

Show that if two objects of mass M and m are separated by a distance r_{1}, then the work required to increase the separation to a distance r_{2} is equal to $\mathrm{W}=\mathrm{GMm}\left(\mathrm{r}_{1}^{-1}-\mathrm{r}_{2}^{-1}\right)$

SOLUTION. Using the equation

$$
W=\int_{a}^{b} F(x) d x
$$

We obtain

$$
W=\int_{r_{1}}^{r_{2}} \frac{G M m}{r^{2}} \mathrm{dr}=\mathrm{GMm} \int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \frac{1}{\mathrm{r}^{2}} \mathrm{dr}=\left.\operatorname{GMm}\left(-\frac{1}{\mathrm{r}}\right)\right|_{\mathrm{r}_{1}} ^{\mathrm{r}_{2}}=\operatorname{GMm}\left(\mathrm{r}_{1}^{-1}-\mathrm{r}_{2}^{-1}\right)
$$

Problem 6.5.36 Use the result of Exercise 35 to calculate the work required to place a 2000-kg satellite in an orbit 1200 km above the surface of the earth. Assume that the earth is a sphere of radius $R_{e}=6.37 * 10^{6} \mathrm{~m}$ and mass $M_{e}=5.98 * 10^{24} \mathrm{~kg}$. Treat the satellite as a point mass.

Solution. The satellite moves from the surface of the earth to $1200^{*} 1000 \mathrm{~m}$ above the earth. This is from distance $r_{1}=R_{e} m$ to $r_{2}=R_{e}+1200 * 1000=R_{e}+1200000 \mathrm{~m}$. Thus the work is

$$
\begin{gather*}
W=\operatorname{GMm}\left(r_{1}^{-1}-r_{2}^{-1}\right)=\operatorname{GMm}\left(\frac{1}{R_{e}}-\frac{1}{R_{e}+1200000}\right) \\
=\left(6.67 * 10^{-11}\right)\left(5.98 * 10^{24}\right)(2000)\left(\frac{1}{6.37 * 10^{6}}-\frac{1}{6.37 * 10^{6}+1200000}\right) \text { joules }
\end{gather*}
$$

Problem 7.1.18

Find the equation of the tangent line at the point indicated

$$
y=e^{x^{2}}, \quad x_{0}=1
$$

SOLUTION. Let $f(x)=e^{x^{2}}$. Then $f^{\prime}(x)=2 x e^{x^{2}}$ and $f^{\prime}(1)=2 e$. At $x_{0}=1, f(1)=e$, so the equation of the tangent line is $y=2 e(x-1)+e=2 e x-e$.
7.1.18

Problem 7.1.44

Calculate the derivative indicated

$$
\frac{d^{2} y}{d t} ; \quad y=e^{-2 t} \sin 3 t
$$

SOLUTION. Let $Y=e^{-2 t} \sin 3 t$. Then

$$
\frac{d y}{d t}=e^{-2 t}(3 \cos 3 t)-2 e^{-2 t} \sin 3 t=e^{-2 t}(3 \cos 3 t-2 \sin 3 t)
$$

and

$$
\frac{d^{2} y}{d t}=e^{-2 t}(-9 \sin 3 t-6 \cos 3 t)-2 e^{-2 t}(3 \cos 3 t-2 \sin 3 t)=e^{-2 t}(-5 \sin 3 t-12 \cos 3 t)
$$

Problem 7.1.50 $f(x)=x^{2} e^{x}$

SOLUTION. Setting $f^{\prime}(x)=\left(x^{2}+2 x\right) e^{x}$ equal to zero and solving for x gives $\left(x^{2}+2 x\right) e^{x}=0$ which is true if and only if $x=0$ or $x=-2$.

Now, $f^{\prime \prime}(x)=\left(x^{2}+4 x+2\right) e^{x}$. Because $f^{\prime \prime}(0)=2>0, x=0$ corresponds to a local minimum. On the other hand, $f^{\prime \prime}(-2)=(4-8+2) e^{-2}=-2 / e^{2}<0$, so $x=-2$ corresponds to a local maximum.

Problem 7.1.81 $\int \frac{e^{2 x}-e^{4 x}}{e^{x}} d x$

SOLUTION.

$$
\int\left(\frac{e^{2 x}-e^{4 x}}{e^{x}}\right) d x=\int\left(e^{x}-e^{3 x}\right) d x=e^{x}-\frac{e^{3 x}}{3}+C
$$

Problem 7.1.91

Wind engineers have found that wind speed $v($ in $\mathrm{m} / \mathrm{s})$ at a given location follows a Rayleigh distribution of the type

$$
W(v)=\frac{1}{32} v e^{-v^{2} / 64}
$$

This means that the probability that v lies between a and b is equal to the shaded area in the figure below

1. Show that the probability that $v \in[0, \mathrm{~b}]$ is $1-\mathrm{e}^{-\mathrm{b}^{2} / 64}$.
2. Calculate the probability that $v \in[2,5]$.

SOLUTION. 1. The probability that $v \in[0 . b]$ is

$$
\int_{0}^{b} \frac{1}{32} v e^{-v^{2} / 64} d v
$$

Let $u=-v^{2} / 64$. Then $d u=-\frac{v}{32} d v$ and

$$
\int_{0}^{b} \frac{1}{32} v e^{-v^{2} / 64} d v=-\int_{0}^{-b^{2} / 64} e^{u} d u=1-e^{b^{2} / 64}
$$

2. The probability that $v \in[2,5]$ is the probability that $v \in[0,5]$ minus the probability that $v \in[0,2]_{\text {¿ }}$ Using part (a), it follows that the probability that $v \in[2,5]$ is

$$
\left(1-e^{-25 / 64}\right)-\left(1-e^{-4 / 64}\right)=e^{-1 / 16}-e^{-25 / 64} \approx 0.263
$$

Problem 7.1.94

Recall the following property of integrals: If $f(t) \geq g(t)$ for all $t \geq 0$, then for all $x \geq 0$,

$$
\begin{equation*}
\int_{0}^{x} f(t) d t \geq \int_{0}^{x} g(t) d t \tag{1}
\end{equation*}
$$

The inequality $e^{t} \geq 1$ holds for $t \geq 0$ because $e>1$. Use (1) to prove that

$$
e^{x} \geq 1+x \text { for } x \geq 0
$$

Then prove, by successive integration, the following inequalities (for $x \geq 0$):

$$
\begin{gathered}
e^{x} \geq 1+x+\frac{1}{2} x^{2} \\
e^{x} \geq 1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}
\end{gathered}
$$

SOLUTION. Integrating both sides of the inequality $e^{t} \geq 1$ yields

$$
\int_{0}^{x} e^{t} d t=e^{x}-1 \geq x \text { or } e^{x} \geq 1+x
$$

Integrating both sides of this new inequality then gives

$$
\int_{0}^{x} e^{t} d t=e^{x}-1 \geq x+x^{2} / 2 \text { or } e^{x} \geq 1+x+x^{2} / 2
$$

Finally, integrating both sides again gives

$$
\int_{0}^{x} e^{t} d t=e^{x}-1 \geq x+x^{2} / 2+x^{3} / 6 \text { or } e^{x} \geq 1+x+x^{2} / 2+x^{3} / 6
$$

as requested.

