HOMEWORK SOLUTIONS MATH 1910
Sections 7.9, 8.1 Fall 2016

Problem 7.9.33 Show that for any constants M, k, and a, the function

y(t) = %M (1 + tanh <k(t2_ a)))

/

- - oy Y
satisfies the logistic equation: » —k(1 M)‘
SOLUTION. Let 1 ”
y(t) = 3M(1 + tanh( (tz_ iy
Then OER K )
y(t) Lo t—a
e 0, 1 Kt—a), 1, kt—a)
B & _ ! B 2 t—a I 2 t—a
ky(t)(1 i ) = =Mk(1 — tanh”( ) = 4l\/lk ( 3 ).
Finally,
vy Voo k(t—a), oyl
y'(t) = ;MK (———) =ky()(1 — =77)
Problem 7.9.54 Solve the integmlJ' \/)%
SOLUTION. 4 d(x/2)
X x 1%
= =cosh™ (=) +C.
J\/x2—4 J\/(;)z_1 2
Problem 7.9.69

(a) Show that y = tanht satisfies the differential equation dy/dt = 1 —y? with initial condition
y(0) =0.

(b) Show that for arbitrary A, B, the function
y = Atanh(Bt)
satisfies

diy_BBZ

dt_ _Kg y U(O)ZO



(c) Let v(t) be the velocity of a falling object of mass m. For large velocities, air resistance is propor-

tional to the square velocity v(t)?. If we choose coordinates so that v(t) > O for a falling object,
then by Newton’s Law of Motion, there is a constant k > 0 such that

Solve for v(t) by applying the result of (b) with A = \/gm/k and B = /gk/m.

(d) Calculate the terminal velocity lim_, oo V(t).
(e) Find k if m = 1501b and the terminal velocity is 100mph.

SOLUTION. (a) First, note that if we divide the identity cosh?t —sinh?t = 1 by cosh? t, we
obtain the identity 1 — tanh? t = sech? t. Now, let y = tanh t. Then,

%:sechzt:1—tanhzt:1—y2.

Furthermore, y(0) = tanh 0 = 0.
(b) Lety = A tanh(Bt). Then

dy

5 5 yZ Byl
at ABsech”(Bt) = AB(1 — tanh”(Bt)) = AB <1 — ) =AB —
Furthermore, y(0) = Atanh0 = 0.

(c) Matching the differential equation

dv_ ko
dt 9 m
with the template
dv B,
T AB Xv
from part (b) yields
AB = and B_k
-9 A m’
Solving for A and B gives
k
A= % and B = ?g
Thus

v(t) = A tanh(Bt) = n}?tanh( kgt).

(d) limy 0o v(t) = \/?limt_)oo tanh (@t) - /M9



(e) Substitute m = 150lb and g = 32ft/sec? = 78545.5miles/hr? into the equation for the
terminal velocity obtained in part (d) and then solve for k. This gives

_150(78545.5)

k= 1002 = 1178.181b/mile

Problem 8.1.6 Solve J tan ™! xdx using integration by parts, with u = tan~' x and dv = dx.

SOLUTION. Usingu =tan"'xandv’ =1givesusu=tan"'x,v=x

ﬁu/: 1
x2

=y v/ = 1. Integration by Parts gives us

Jtan‘l xdx = xtan~' x — J( )xdx.

x2+1
For the integral on the right we’ll use the substitution w = x? + 1, dw = 2xdx. Then we have

1 1 1(dw
1 o 1 . 9 B
Jtan xdx = xtan X_Ej(m)ZXdX—Xtan X_EJW_

:xtan_]x—]zln\wl—i-C:xtan_1 x—%ln|x2+1|+C.
8.1.6

Problem 8.1.13 Solve the integral sz sin xdx.

SOLUTION. Letu = xZ and v/ = sinx. Then we have u = x2v = —cos x

u’ = 2xv’ = sinx Using Integration by Parts, we get

sz sinxdx = x?(—cosx) — JZX(—COS x)dx = —x? cosx + ijcos xdx.

We must apply Integration by Parts again to evaluate Jx cos xdx. Taking u = x and v/ = cosx,
we get

chosxdx =xsinx — Jsinxdx = xsinx + cosx + C.
Plugging this into the original equation gives us

2 cosx + 2(xsinx + cosx) + C = —x? cos x 4 2x sinx + 2 cos x + C.

sz sinxdx = —x

Problem 8.1.20 Solve the integral J 1Z—zxdx.



SOLUTION. Letu =Inx and v/ = x 2. Then we have u = Inxv = —x !

/ 1 /

U=y = x~2 Using Integration by Parts, we get
1 1 —1
J n—zxdx = ——Inx— J l(—)dx = —l Inx + fozdx
X X X X X
1 1 1
= —Inx—-+C=—(Inx+1)+C.
X X X
8.1.20
Problem 8.1.38 Solve the integral J M

(Inx)’
Inx

SOLUTION. Let u = In(Inx) and dv = dx/x. This gives u’ = = Xﬂ?, and v = Inx.

Applying integration by parts formula, we have:
J In(Inx)
X

dx =Inx-In(Inx) —Inx +c¢

dx:lnx~ln(lnx)—Jlnx- ]
x-Inx

2

Problem 8.1.49 Solve the integral J x Inxdx.
1

SOLUTION. Letu = Inxand dv = xdx. This gives, u’ = 1/xdx and v = x?/2. Using integration
by parts formula we have:

2 2 2.2 2 2
J xlnxdx:(x—lnthz—J %-%dx (X—lnxh*)z—(x—hﬁz:21n2—1—(0—%):21n2—3
1

1 2 2 4 4

Problem 8.1.60

Derive the reduction formula

Jx“e"dx =x"e* — an“’1 e*dx.

SOLUTION. Letu = x™ and dv = e*dx. Then du = nx*'dx, v = €%, and

Jx“e"dx =x"e* — nJ'x“*1 e*dx.

Problem 8.1.78

Find f(x), assuming that
Jf(x)e"dx = f(x)e* — Jx_1 e*dx

4



SOLUTION. We see that Integration by Parts was applied to Jf(x)e"dx with u = f(x) and

dv = e*dx, and therefore f'(x) = u’ = x~'. Thus, f(x) = Inx + C for any constant C.

Problem 8.1.80

Find the area enclosed by y = Inx and y = (Inx)?.

SOLUTION. The two graphs intersect at x = 1 and x = ¢, and Inx is above (Inx)?, so the area is

J (Inx — (Inx)?) dx:J lndx—J (Inx)%dx

1 1 1

2Inx
X

Using integration by parts for the second integral, let u = (Inx)2, dv = dx; then du =
and v = x, so that

e e

Inxdx =e —ZJ' Inxdx
1

Je(lnx)zdx = (x(Inx)?) ‘T — ZJ

1 1

Substituting this back into the original equation gives

e e
J (Inx — (Inx)?) dx = 3J Inxdx —e
1 1
We use integration by parts to evaluate the remaining integral, with u = Inxand dv = dx; then

du = %dx and v = x, so that
€ e
J h’leX:X].I'lX‘1 —int§ldx=e—(e—1) =1
1

and thus, substituting back in, the value of the original integral is

J (Inx — (Inx)?) dx zsj Inxdx —e=3—e
1 1

Problem 8.1.86

Define P, (x) by
Jx"e"dx =P.(x)e*+C

Use the reduction formula in Problem 60 to prove that Py (x) = x™ — nPyn_1(x). Use this recursion
relation to find Py (x) for n = 1,2,3,4. Note that Po(x) = 1.

SOLUTION. From 8.1.60 we have

Jx“e"dx:x“e"—an“*]e"dx:Pn(x)e"+C 1)



and also
Jx“f‘ e*dx =P,_;(x)e*+D 2)

If we substitute the result of (2) into (1) and compare the coefficients in front of e* we get:

Pn(x)e* + C=x"e* —n(Pu_i1(x)e*+ D) =e*(x™ —nP,_1(x)) —nD

Pi(x) = x'—1Py(x) =x—1
P2 (x) 2P (x)=x2—2(x—1)=x* —2x+2
P3(x) = x>—3P,(x)=x>—3(x*—2x+2)=x>—3x> +6x—6
Pa(x) FaPs(x) =xP —4(x3 =32+ 6x—6) =xF —4x3 +12x% — 24x + 24
8.1.86
Problem 8.1.90

1
Set I(a,b) = J x4 (1 —x)®dx, where a, b are whole numbers.
0

(a) Use substitution to show that I(a,b) = I(b, a).

1
a+1

(c) Prove that fora > 1andb > 0,

(b) Show that 1(a,0) =1(0,a) =

I(a,b):ﬁl(a—l,b%—])

(d) Use (b) and (c) to calculate 1(1,1) and 1(3, 2).

alb!
(e) Show that I((l,b) = m

SOLUTION. (a) Letu =1—x = du = —dx and the bounds of u go from 1 to 0.

0 1

(1 —uw)u®(—du) :J (1—w)%ubdu=1I(b,a)
0

1

I(a,b) :J

(11_ b —
Ox( x)°dx J

1
(b) For b = 0 from part (a) we get
1 xat1 1

I(a,0) = I(b,0) = | x%dx = _
(a ) ( ) JOX x a+1lo—1 a+1

(c) Let us try to transform the RHS of what we want to prove, by using integration by parts,
where u = (1—x)?*! and dv = x%~"dx. This gives du = —(b+1)x’dx and v = X-. Then
we have:

1 1
LT __a ot Xt b+T o b _J a(q_1bae
b+]l(a 1,b+1)—b_H ((1 x) ao—>1+L g x4 (1—x)%dx | = ox (1—x)°dx = I(a, b)



(d)

1 1 1 ! 1/x3 1
1(1)1):EI“—1,1+1):EI(0)2):EI(2>O):EJ XZdX:2<X> = =
0 0—>1

2 21 2 2 2 x° !
1(3,2) =1(2,3) = ——1(1,4) = _1(0,5) = —1(5,0) = — | x®dx = —— =15
(3,2) =1(2,3) = 751(1,4) = 5£1(0,5) = 551(5,0) zojoxdx 20601 10

(e) Apply result (c) a times and also apply result from part (b) once.

a a a—1 a a—la-2

. a-(a=1-(a=2)---2-1 B
_b~(b+1).(b+2)...(b+a71),(b+a)1(0>a+b)—

a-(a=1)-(a—2)---2-1 . 1 ~al-bl
b-(b+1)-(b+2)---(b+a—1)-(b+a) b+a+1 (a+b+1)

Problem 8.1.91

Let 1, = Jx“ cos(x?)dx and J,, = Jx“ sin(x?)dx.

(a) Find a reduction formula that expresses 1, in terms of Jn_. Hint: Write X™ cos(x?) and
x" 1 (x cos(x?)).

(b) Use the result of (a) to show that 1., can be evaluated explicitly if n is odd.

(c) Evaluate I5.

SOLUTION. (a) Letu=x""",dv =xcos(x?) = du = (n—1)x"?dxand dv = +d(sin(x?)) =
v = 1sin(x?). Applying integration by parts on I,, we get:

. 2 1 n—1 . q; 2
I = Jx”’] (x cos(x?))dx = x™! %X)—% an’z sin(x?)dx = X Zsm(x )_ 3 Jn—2

(b) If nis odd thenn —2,n —4,n —6,...,3,1 are all odd numbers, and recursively we can
relate using result from part (a), In to Jn—2,Jn—4,...,J1 in the end. And we can easily
compute J1, which means that we can easily compute I, for every n odd.

(c)
I3 = x*sin(x?)/2—7J; =x2 sin(xz)/Z—J'xsin(xz)dx
= x? sin(xz)/2+Jd(cos(x2))/2

= x%sin(x?)/2 + cos(x?)/2+ C



