
HOMEWORK SOLUTIONS MATH 1910
Sections 7.9, 8.1 Fall 2016

Problem 7.9.33 Show that for any constants M, k, and a, the function

y(t) =
1

2
M

(
1+ tanh

(
k(t− a)

2

))

satisfies the logistic equation:
y ′

y
= k

(
1−

y

M

)
.

SOLUTION. Let

y(t) =
1

2
M(1+ tanh(

k(t− a)

2
)) .

Then

1−
y(t)

M
=

1

2
(1− tanh(

k(t− a)

2
)) ,

and

ky(t)(1−
y(t)

M
) =

1

4
Mk(1− tanh2(

k(t− a)

2
)) =

1

4
Mk2(

k(t− a)

2
) .

Finally,

y ′(t) =
1

4
Mk2(

k(t− a)

2
) = ky(t)(1−

y(t)

M
) .

7.9.33

Problem 7.9.54 Solve the integral
∫

dx√
x2 − 4

SOLUTION. ∫
dx√
x2 − 4

=

∫
d(x/2)√
(x
2
)2 − 1

= cosh−1(
x

2
) + C.

7.9.54

Problem 7.9.69

(a) Show that y = tanh t satisfies the differential equation dy/dt = 1 − y2 with initial condition
y(0) = 0.

(b) Show that for arbitrary A, B, the function

y = A tanh(Bt)

satisfies
dy

dt
= AB−

B

A
y2, y(0) = 0

1



(c) Let v(t) be the velocity of a falling object of mass m. For large velocities, air resistance is propor-
tional to the square velocity v(t)2. If we choose coordinates so that v(t) > 0 for a falling object,
then by Newton’s Law of Motion, there is a constant k > 0 such that

dv

dt
= g−

k

m
v2

Solve for v(t) by applying the result of (b) with A =
√
gm/k and B =

√
gk/m.

(d) Calculate the terminal velocity limt→∞ v(t).

(e) Find k if m = 150lb and the terminal velocity is 100mph.

SOLUTION. (a) First, note that if we divide the identity cosh2 t − sinh2 t = 1 by cosh2 t, we
obtain the identity 1− tanh2 t = sech2 t. Now, let y = tanh t. Then,

dy

dt
= sech2 t = 1− tanh2 t = 1− y2.

Furthermore, y(0) = tanh 0 = 0.

(b) Let y = A tanh(Bt). Then

dy

dt
= AB sech2(Bt) = AB(1− tanh2(Bt)) = AB

(
1−

y2

A2

)
= AB−

By2

A

Furthermore, y(0) = A tanh 0 = 0.

(c) Matching the differential equation

dv

dt
= g−

k

m
v2

with the template
dv

dt
= AB−

B

A
v2

from part (b) yields

AB = g and
B

A
=

k

m
.

Solving for A and B gives

A =

√
mg

k
and B =

√
kg

b
.

Thus

v(t) = A tanh(Bt) =
√

mg

k
tanh

(√
kg

b
t

)
.

(d) limt→∞ v(t) =

√
mg

k
limt→∞ tanh

(√
kg

b
t

)
=

√
mg

k
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(e) Substitute m = 150lb and g = 32ft/sec2 = 78545.5miles/hr2 into the equation for the
terminal velocity obtained in part (d) and then solve for k. This gives

k =
150(78545.5)

1002
= 1178.18lb/mile

7.9.69

Problem 8.1.6 Solve
∫

tan−1 xdx using integration by parts, with u = tan−1 x and dv = dx.

SOLUTION. Using u = tan−1 x and v ′ = 1 gives us u = tan−1 x, v = x

=⇒ u ′ =
1

x2 + 1
, v ′ = 1. Integration by Parts gives us

∫
tan−1 xdx = x tan−1 x−

∫
(

1

x2 + 1
)xdx.

For the integral on the right we’ll use the substitution w = x2 + 1, dw = 2xdx. Then we have∫
tan−1 xdx = x tan−1 x−

1

2

∫
(

1

x2 + 1
)2xdx = x tan−1 x−

1

2

∫
dw

w
=

= x tan−1 x−
1

2
ln |w|+ C = x tan−1 x−

1

2
ln |x2 + 1|+ C.

8.1.6

Problem 8.1.13 Solve the integral
∫
x2 sin xdx.

SOLUTION. Let u = x2 and v ′ = sin x. Then we have u = x2v = − cos x

u ′ = 2xv ′ = sin x Using Integration by Parts, we get∫
x2 sin xdx = x2(− cos x) −

∫
2x(− cos x)dx = −x2 cos x+ 2

∫
x cos xdx.

We must apply Integration by Parts again to evaluate
∫
x cos xdx. Taking u = x and v ′ = cos x,

we get ∫
x cos xdx = x sin x−

∫
sin xdx = x sin x+ cos x+ C.

Plugging this into the original equation gives us∫
x2 sin xdx = −x2 cos x+ 2(x sin x+ cos x) + C = −x2 cos x+ 2x sin x+ 2 cos x+ C.

8.1.13

Problem 8.1.20 Solve the integral
∫

ln x

x2
dx.
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SOLUTION. Let u = ln x and v ′ = x−2. Then we have u = ln xv = −x−1

u ′ =
1

x
v ′ = x−2 Using Integration by Parts, we get∫

ln x

x2
dx = −

1

x
ln x−

∫
1

x
(
−1

x
)dx = −

1

x
ln x+

∫
x−2dx

= −
1

x
ln x−

1

x
+ C = −

1

x
(ln x+ 1) + C.

8.1.20

Problem 8.1.38 Solve the integral
∫

ln(ln x)dx

x
.

SOLUTION. Let u = ln(ln x) and dv = dx/x. This gives u ′ = (ln x) ′

lnx
= 1

x ln x
, and v = ln x.

Applying integration by parts formula, we have:∫
ln(ln x)

x
dx = ln x · ln(ln x) −

∫
ln x · 1

x · ln x
dx = ln x · ln(ln x) − ln x+ c

8.1.38

Problem 8.1.49 Solve the integral
∫2
1

x ln xdx.

SOLUTION. Let u = ln x and dv = xdx. This gives, u ′ = 1/xdx and v = x2/2. Using integration
by parts formula we have:∫2
1

x ln xdx = (
x2

2
ln x)1−→2−

∫2
1

x2

2
·1
x
dx = (

x2

2
ln x)1−→2−(

x2

4
)1−→2 = 2 ln 2−1−(0−

1

4
) = 2 ln 2−

3

4

8.1.49

Problem 8.1.60

Derive the reduction formula ∫
xnexdx = xnex − n

∫
xn−1exdx.

SOLUTION. Let u = xn and dv = exdx. Then du = nxx−1dx, v = ex, and∫
xnexdx = xnex − n

∫
xn−1exdx.

8.1.60

Problem 8.1.78

Find f(x), assuming that ∫
f(x)exdx = f(x)ex −

∫
x−1exdx
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SOLUTION. We see that Integration by Parts was applied to
∫
f(x)exdx with u = f(x) and

dv = exdx, and therefore f ′(x) = u ′ = x−1. Thus, f(x) = ln x+ C for any constant C.

8.1.78

Problem 8.1.80

Find the area enclosed by y = ln x and y = (ln x)2.

SOLUTION. The two graphs intersect at x = 1 and x = e, and ln x is above (ln x)2, so the area is∫e
1

(
ln x− (ln x)2

)
dx =

∫e
1

lndx−

∫e
1

(ln x)2dx

Using integration by parts for the second integral, let u = (ln x)2, dv = dx; then du =
2 ln x

x
and v = x, so that ∫e

1

(ln x)2dx =
(
x(ln x)2

) ∣∣∣e
1
− 2

∫e
1

ln xdx = e− 2

∫e
1

ln xdx

Substituting this back into the original equation gives∫e
1

(
ln x− (ln x)2

)
dx = 3

∫e
1

ln xdx− e

We use integration by parts to evaluate the remaining integral, with u = ln xand dv = dx; then

du =
1

x
dx and v = x, so that∫e

1

ln xdx = x ln x
∣∣∣e
1
− inte11dx = e− (e− 1) = 1

and thus, substituting back in, the value of the original integral is∫e
1

(
ln x− (ln x)2

)
dx = 3

∫e
1

ln xdx− e = 3− e

8.1.80

Problem 8.1.86

Define Pn(x) by ∫
xnexdx = Pn(x)e

x + C

Use the reduction formula in Problem 60 to prove that Pn(x) = xn − nPn−1(x). Use this recursion
relation to find Pn(x) for n = 1, 2, 3, 4. Note that P0(x) = 1.

SOLUTION. From 8.1.60 we have∫
xnexdx = xnex − n

∫
xn−1exdx = Pn(x)e

x + C (1)
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and also ∫
xn−1exdx = Pn−1(x)e

x +D (2)

If we substitute the result of (2) into (1) and compare the coefficients in front of ex we get:

Pn(x)e
x + C = xnex − n(Pn−1(x)e

x +D) = ex(xn − nPn−1(x)) − nD

which gives Pn(x) = xn − nPn−1(x).

P1(x) = x1 − 1P0(x) = x− 1

P2(x) = x2 − 2P1(x) = x2 − 2(x− 1) = x2 − 2x+ 2

P3(x) = x3 − 3P2(x) = x3 − 3(x2 − 2x+ 2) = x3 − 3x2 + 6x− 6

P4(x) = x4 − 4P3(x) = x4 − 4(x3 − 3x2 + 6x− 6) = x4 − 4x3 + 12x2 − 24x+ 24

8.1.86

Problem 8.1.90

Set I(a, b) =
∫1
0

xa(1− x)bdx, where a, b are whole numbers.

(a) Use substitution to show that I(a, b) = I(b, a).

(b) Show that I(a, 0) = I(0, a) =
1

a+ 1
.

(c) Prove that for a ≥ 1 and b ≥ 0,

I(a, b) =
a

b+ 1
I(a− 1, b+ 1)

(d) Use (b) and (c) to calculate I(1, 1) and I(3, 2).

(e) Show that I(a, b) =
a!b!

(a+ b+ 1)!
.

SOLUTION. (a) Let u = 1− x =⇒ du = −dx and the bounds of u go from 1 to 0.

I(a, b) =

∫1
0

xa(1− x)bdx =

∫0
1

(1− u)aub(−du) =

∫1
0

(1− u)aubdu = I(b, a)

(b) For b = 0 from part (a) we get

I(a, 0) = I(b, 0) =

∫1
0

xadx =
xa+1

a+ 10−→1
=

1

a+ 1

(c) Let us try to transform the RHS of what we want to prove, by using integration by parts,
where u = (1− x)b+1 and dv = xa−1dx. This gives du = −(b+ 1)xbdx and v = xa

a
. Then

we have:

a

b+ 1
I(a−1, b+1) =

a

b+ 1

(
(1− x)b+1 x

a

a 0−→1
+

∫1
0

b+ 1

a
xa(1− x)bdx

)
=

∫1
0

xa(1−x)bdx = I(a, b)
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(d)

I(1, 1) =
1

2
I(1− 1, 1+ 1) =

1

2
I(0, 2) =

1

2
I(2, 0) =

1

2

∫1
0

x2dx =
1

2

(
x3

3

)
0−→1

=
1

6

I(3, 2) = I(2, 3) =
2

1+ 3
I(1, 4) =

2

4

1

5
I(0, 5) =

2

20
I(5, 0) =

2

20

∫1
0

x5dx =
2

20

x6

6 0−→1
=

1

10

(e) Apply result (c) a times and also apply result from part (b) once.

I(a, b) =
a

b+ 1
I(a−1, b+1) =

a

b+ 1
·a− 1

b+ 2
I(a−2, b+2) =

a

b+ 1
·a− 1

b+ 2

a− 2

b+ 3
I(a−3, b+3) = · · · =

=
a · (a− 1) · (a− 2) · · · 2 · 1

b · (b+ 1) · (b+ 2) · · · (b+ a− 1) · (b+ a)
I(0, a+ b) =

=
a · (a− 1) · (a− 2) · · · 2 · 1

b · (b+ 1) · (b+ 2) · · · (b+ a− 1) · (b+ a)
· 1

b+ a+ 1
=

a! · b!
(a+ b+ 1)!

8.1.90

Problem 8.1.91

Let In =

∫
xn cos(x2)dx and Jn =

∫
xn sin(x2)dx.

(a) Find a reduction formula that expresses In in terms of Jn−2. Hint: Write Xn cos(x2) and
xn−1(x cos(x2)).

(b) Use the result of (a) to show that In can be evaluated explicitly if n is odd.

(c) Evaluate I3.

SOLUTION. (a) Let u = xn−1, dv = x cos(x2) =⇒ du = (n−1)xn−2dx and dv = 1
2
d(sin(x2)) =⇒

v = 1
2

sin(x2). Applying integration by parts on In we get:

In =

∫
xn−1(x cos(x2))dx = xn−1 sin(x2)

2
−
n− 1

2

∫
xn−2 sin(x2)dx =

xn−1 · sin(x2)
2

−
n− 1

2
Jn−2

(b) If n is odd then n − 2, n − 4, n − 6, ..., 3, 1 are all odd numbers, and recursively we can
relate using result from part (a), In to Jn−2, Jn−4, ..., J1 in the end. And we can easily
compute J1, which means that we can easily compute In for every n odd.

(c)

I3 = x2 sin(x2)/2− J1 = x2 sin(x2)/2−
∫
xsin(x2)dx

= x2 sin(x2)/2+
∫
d(cos(x2))/2

= x2 sin(x2)/2+ cos(x2)/2+ C

8.1.91
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