Homework Solutions

Problem 7.9.33 Show that for any constants M, k, and a, the function

$$
y(t)=\frac{1}{2} M\left(1+\tanh \left(\frac{k(t-a)}{2}\right)\right)
$$

satisfies the logistic equation: $\frac{\mathrm{y}^{\prime}}{\mathrm{y}}=\mathrm{k}\left(1-\frac{\mathrm{y}}{\mathrm{M}}\right)$.
Solution. Let

$$
y(t)=\frac{1}{2} M\left(1+\tanh \left(\frac{k(t-a)}{2}\right)\right)
$$

Then

$$
1-\frac{y(t)}{M}=\frac{1}{2}\left(1-\tanh \left(\frac{k(t-a)}{2}\right)\right)
$$

and

$$
k y(t)\left(1-\frac{y(t)}{M}\right)=\frac{1}{4} M k\left(1-\tanh ^{2}\left(\frac{k(t-a)}{2}\right)\right)=\frac{1}{4} M k^{2}\left(\frac{k(t-a)}{2}\right)
$$

Finally,

$$
y^{\prime}(t)=\frac{1}{4} M k^{2}\left(\frac{k(t-a)}{2}\right)=k y(t)\left(1-\frac{y(t)}{M}\right)
$$

Problem 7.9.54 Solve the integral $\int \frac{\mathrm{dx}}{\sqrt{x^{2}-4}}$
SOLUTION.

$$
\int \frac{d x}{\sqrt{x^{2}-4}}=\int \frac{d(x / 2)}{\sqrt{\left(\frac{x}{2}\right)^{2}-1}}=\cosh ^{-1}\left(\frac{x}{2}\right)+C
$$

Problem 7.9.69

(a) Show that $\mathrm{y}=\tanh \mathrm{t}$ satisfies the differential equation $\mathrm{dy} / \mathrm{dt}=1-\mathrm{y}^{2}$ with initial condition $y(0)=0$.
(b) Show that for arbitrary A, B, the function

$$
y=A \tanh (B t)
$$

satisfies

$$
\frac{d y}{d t}=A B-\frac{B}{A} y^{2}, \quad y(0)=0
$$

(c) Let $v(\mathrm{t})$ be the velocity of a falling object of mass m . For large velocities, air resistance is proportional to the square velocity $v(t)^{2}$. If we choose coordinates so that $v(t)>0$ for a falling object, then by Newton's Law of Motion, there is a constant $k>0$ such that

$$
\frac{d v}{d t}=g-\frac{k}{m} v^{2}
$$

Solve for $v(t)$ by applying the result of (b) with $A=\sqrt{g m / k}$ and $B=\sqrt{g k / m}$.
(d) Calculate the terminal velocity $\lim _{\mathrm{t} \rightarrow \infty} v(\mathrm{t})$.
(e) Find k if $\mathrm{m}=150 \mathrm{lb}$ and the terminal velocity is 100 mph .

SOLUTION. (a) First, note that if we divide the identity $\cosh ^{2} t-\sinh ^{2} t=1$ by $\cosh ^{2} t$, we obtain the identity $1-\tanh ^{2} t=\operatorname{sech}^{2} t$. Now, let $y=\tanh t$. Then,

$$
\frac{d y}{d t}=\operatorname{sech}^{2} t=1-\tanh ^{2} t=1-y^{2}
$$

Furthermore, $y(0)=\tanh 0=0$.
(b) Let $y=A \tanh (B t)$. Then

$$
\frac{d y}{d t}=A B \operatorname{sech}^{2}(B t)=A B\left(1-\tanh ^{2}(B t)\right)=A B\left(1-\frac{y^{2}}{A^{2}}\right)=A B-\frac{B y^{2}}{A}
$$

Furthermore, $y(0)=A \tanh 0=0$.
(c) Matching the differential equation

$$
\frac{d v}{d t}=g-\frac{k}{m} v^{2}
$$

with the template

$$
\frac{d v}{d t}=A B-\frac{B}{A} v^{2}
$$

from part (b) yields

$$
A B=g \quad \text { and } \quad \frac{B}{A}=\frac{k}{m} .
$$

Solving for A and B gives

$$
A=\sqrt{\frac{\mathrm{mg}}{\mathrm{k}}} \quad \text { and } \quad B=\sqrt{\frac{\mathrm{kg}}{\mathrm{~b}}}
$$

Thus

$$
v(\mathrm{t})=A \tanh (\mathrm{Bt})=\sqrt{\frac{\mathrm{mg}}{\mathrm{k}}} \tanh \left(\sqrt{\frac{\mathrm{~kg}}{\mathrm{~b}}} \mathrm{t}\right)
$$

(d) $\lim _{\mathrm{t} \rightarrow \infty} v(\mathrm{t})=\sqrt{\frac{\mathrm{mg}}{\mathrm{k}}} \lim _{\mathrm{t} \rightarrow \infty} \tanh \left(\sqrt{\frac{\mathrm{kg}}{\mathrm{b}}} \mathrm{t}\right)=\sqrt{\frac{\mathrm{mg}}{\mathrm{k}}}$
(e) Substitute $\mathrm{m}=150 \mathrm{lb}$ and $\mathrm{g}=32 \mathrm{ft} / \mathrm{sec}^{2}=78545.5 \mathrm{miles} / \mathrm{hr}^{2}$ into the equation for the terminal velocity obtained in part (d) and then solve for k. This gives

$$
\mathrm{k}=\frac{150(78545.5)}{100^{2}}=1178.18 \mathrm{lb} / \mathrm{mile}
$$

Problem 8.1.6 Solve $\int \tan ^{-1} x \mathrm{~d} x$ using integration by parts, with $u=\tan ^{-1} \mathrm{x}$ and $\mathrm{d} v=\mathrm{d} x$.

SOLUTION. Using $u=\tan ^{-1} x$ and $v^{\prime}=1$ gives us $u=\tan ^{-1} x, v=x$
$\Longrightarrow u^{\prime}=\frac{1}{x^{2}+1}, v^{\prime}=1$. Integration by Parts gives us

$$
\int \tan ^{-1} x d x=x \tan ^{-1} x-\int\left(\frac{1}{x^{2}+1}\right) x d x
$$

For the integral on the right we'll use the substitution $w=x^{2}+1, d w=2 x d x$. Then we have

$$
\begin{gathered}
\int \tan ^{-1} x d x=x \tan ^{-1} x-\frac{1}{2} \int\left(\frac{1}{x^{2}+1}\right) 2 x d x=x \tan ^{-1} x-\frac{1}{2} \int \frac{d w}{w}= \\
=x \tan ^{-1} x-\frac{1}{2} \ln |w|+C=x \tan ^{-1} x-\frac{1}{2} \ln \left|x^{2}+1\right|+C
\end{gathered}
$$

Problem 8.1.13 Solve the integral $\int x^{2} \sin x d x$.
SOLUTION. Let $u=x^{2}$ and $v^{\prime}=\sin x$. Then we have $u=x^{2} v=-\cos x$
$u^{\prime}=2 x v^{\prime}=\sin x$ Using Integration by Parts, we get

$$
\int x^{2} \sin x d x=x^{2}(-\cos x)-\int 2 x(-\cos x) d x=-x^{2} \cos x+2 \int x \cos x d x
$$

We must apply Integration by Parts again to evaluate $\int x \cos x d x$. Taking $u=x$ and $v^{\prime}=\cos x$, we get

$$
\int x \cos x d x=x \sin x-\int \sin x d x=x \sin x+\cos x+C
$$

Plugging this into the original equation gives us

$$
\int x^{2} \sin x d x=-x^{2} \cos x+2(x \sin x+\cos x)+C=-x^{2} \cos x+2 x \sin x+2 \cos x+C
$$

Problem 8.1.20 Solve the integral $\int \frac{\ln x}{x^{2}} \mathrm{~d} x$.

SOLUTION. Let $u=\ln x$ and $v^{\prime}=x^{-2}$. Then we have $u=\ln x v=-x^{-1}$ $u^{\prime}=\frac{1}{x} v^{\prime}=\chi^{-2}$ Using Integration by Parts, we get

$$
\begin{aligned}
\int \frac{\ln x}{x^{2}} d x & =-\frac{1}{x} \ln x-\int \frac{1}{x}\left(\frac{-1}{x}\right) d x=-\frac{1}{x} \ln x+\int x^{-2} d x \\
& =-\frac{1}{x} \ln x-\frac{1}{x}+C=-\frac{1}{x}(\ln x+1)+C .
\end{aligned}
$$

Problem 8.1.38 Solve the integral $\int \frac{\ln (\ln x) d x}{x}$.
SOLUTION. Let $u=\ln (\ln x)$ and $d v=d x / x$. This gives $u^{\prime}=\frac{(\ln x)^{\prime}}{\ln x}=\frac{1}{x \ln x}$, and $v=\ln x$. Applying integration by parts formula, we have:

$$
\int \frac{\ln (\ln x)}{x} d x=\ln x \cdot \ln (\ln x)-\int \ln x \cdot \frac{1}{x \cdot \ln x} d x=\ln x \cdot \ln (\ln x)-\ln x+c
$$

Problem 8.1.49 Solve the integral $\int_{1}^{2} x \ln x \mathrm{~d} x$.
SOLUTION. Let $u=\ln x$ and $d v=x d x$. This gives, $u^{\prime}=1 / x d x$ and $v=x^{2} / 2$. Using integration by parts formula we have:

$$
\int_{1}^{2} x \ln x d x=\left(\frac{x^{2}}{2} \ln x\right)_{1 \longrightarrow 2}-\int_{1}^{2} \frac{x^{2}}{2} \cdot \frac{1}{x} d x=\left(\frac{x^{2}}{2} \ln x\right)_{1 \longrightarrow 2}-\left(\frac{x^{2}}{4}\right)_{1 \longrightarrow 2}=2 \ln 2-1-\left(0-\frac{1}{4}\right)=2 \ln 2-\frac{3}{4}
$$

$$
\begin{array}{|l|}
\hline 8.1 .49 \\
\hline
\end{array}
$$

Problem 8.1.60

Derive the reduction formula

$$
\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x
$$

Solution. Let $u=x^{n}$ and $d v=e^{x} d x$. Then $d u=n x^{x-1} d x, v=e^{x}$, and

$$
\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x
$$

Problem 8.1.78

Find $\mathrm{f}(\mathrm{x})$, assuming that

$$
\int f(x) e^{x} d x=f(x) e^{x}-\int x^{-1} e^{x} d x
$$

SOLUTION. We see that Integration by Parts was applied to $\int f(x) e^{x} d x$ with $u=f(x)$ and $d v=e^{x} d x$, and therefore $f^{\prime}(x)=u^{\prime}=x^{-1}$. Thus, $f(x)=\ln x+C$ for any constant C.
8.1.78

Problem 8.1.80

Find the area enclosed by $y=\ln x$ and $y=(\ln x)^{2}$.
SOLUTION. The two graphs intersect at $x=1$ and $x=e$, and $\ln x$ is above $(\ln x)^{2}$, so the area is

$$
\int_{1}^{e}\left(\ln x-(\ln x)^{2}\right) d x=\int_{1}^{e} \ln d x-\int_{1}^{e}(\ln x)^{2} d x
$$

Using integration by parts for the second integral, let $u=(\ln x)^{2}, d v=d x$; then $d u=\frac{2 \ln x}{x}$ and $v=x$, so that

$$
\int_{1}^{e}(\ln x)^{2} d x=\left.\left(x(\ln x)^{2}\right)\right|_{1} ^{e}-2 \int_{1}^{e} \ln x d x=e-2 \int_{1}^{e} \ln x d x
$$

Substituting this back into the original equation gives

$$
\int_{1}^{e}\left(\ln x-(\ln x)^{2}\right) d x=3 \int_{1}^{e} \ln x d x-e
$$

We use integration by parts to evaluate the remaining integral, with $u=\ln x a n d d v=d x$; then $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$ and $v=x$, so that

$$
\int_{1}^{e} \ln x d x=\left.x \ln x\right|_{1} ^{e}-i n t_{1}^{e} 1 d x=e-(e-1)=1
$$

and thus, substituting back in, the value of the original integral is

$$
\int_{1}^{e}\left(\ln x-(\ln x)^{2}\right) d x=3 \int_{1}^{e} \ln x d x-e=3-e
$$

Problem 8.1.86

Define $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ by

$$
\int x^{n} e^{x} d x=P_{n}(x) e^{x}+C
$$

Use the reduction formula in Problem 60 to prove that $P_{n}(x)=x^{n}-n P_{n-1}(x)$. Use this recursion relation to find $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ for $\mathrm{n}=1,2,3,4$. Note that $\mathrm{P}_{0}(\mathrm{x})=1$.

SOLUTION. From 8.1.60 we have

$$
\begin{equation*}
\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x=P_{n}(x) e^{x}+C \tag{1}
\end{equation*}
$$

and also

$$
\begin{equation*}
\int x^{n-1} e^{x} d x=P_{n-1}(x) e^{x}+D \tag{2}
\end{equation*}
$$

If we substitute the result of (2) into (1) and compare the coefficients in front of e^{x} we get:

$$
P_{n}(x) e^{x}+C=x^{n} e^{x}-n\left(P_{n-1}(x) e^{x}+D\right)=e^{x}\left(x^{n}-n P_{n-1}(x)\right)-n D
$$

which gives $P_{n}(x)=x^{n}-n P_{n-1}(x)$.

$$
\begin{align*}
& P_{1}(x)=x^{1}-1 P_{0}(x)=x-1 \\
& P_{2}(x)=x^{2}-2 P_{1}(x)=x^{2}-2(x-1)=x^{2}-2 x+2 \\
& P_{3}(x)=x^{3}-3 P_{2}(x)=x^{3}-3\left(x^{2}-2 x+2\right)=x^{3}-3 x^{2}+6 x-6 \\
& P_{4}(x)=x^{4}-4 P_{3}(x)=x^{4}-4\left(x^{3}-3 x^{2}+6 x-6\right)=x^{4}-4 x^{3}+12 x^{2}-24 x+24
\end{align*}
$$

Problem 8.1.90

Set $I(a, b)=\int_{0}^{1} x^{a}(1-x)^{b} d x$, where a, b are whole numbers.
(a) Use substitution to show that $\mathrm{I}(\mathrm{a}, \mathrm{b})=\mathrm{I}(\mathrm{b}, \mathrm{a})$.
(b) Show that $\mathrm{I}(\mathrm{a}, 0)=\mathrm{I}(0, \mathrm{a})=\frac{1}{\mathrm{a}+1}$.
(c) Prove that for $\mathrm{a} \geq 1$ and $\mathrm{b} \geq 0$,

$$
\mathrm{I}(\mathrm{a}, \mathrm{~b})=\frac{\mathrm{a}}{\mathrm{~b}+1} \mathrm{I}(\mathrm{a}-1, \mathrm{~b}+1)
$$

(d) Use (b) and (c) to calculate $\mathrm{I}(1,1)$ and $\mathrm{I}(3,2)$.
(e) Show that $\mathrm{I}(\mathrm{a}, \mathrm{b})=\frac{\mathrm{a}!\mathrm{b} \text { ! }}{(\mathrm{a}+\mathrm{b}+1) \text { ! }}$.

SOLUTION. (a) Let $u=1-x \Longrightarrow d u=-d x$ and the bounds of u go from 1 to 0 .

$$
I(a, b)=\int_{0}^{1} x^{a}(1-x)^{b} d x=\int_{1}^{0}(1-u)^{a} u^{b}(-d u)=\int_{0}^{1}(1-u)^{a} u^{b} d u=I(b, a)
$$

(b) For $b=0$ from part (a) we get

$$
I(a, 0)=I(b, 0)=\int_{0}^{1} x^{a} d x={\frac{x^{a+1}}{a+1}}_{0 \longrightarrow 1}=\frac{1}{a+1}
$$

(c) Let us try to transform the RHS of what we want to prove, by using integration by parts, where $u=(1-x)^{b+1}$ and $d v=x^{a-1} d x$. This gives $d u=-(b+1) x^{b} d x$ and $v=\frac{x^{a}}{a}$. Then we have:

$$
\frac{a}{b+1} I(a-1, b+1)=\frac{a}{b+1}\left((1-x)^{b+1} \frac{x^{a}}{a}+\int_{0 \longrightarrow 1}^{1} \frac{b+1}{a} x^{a}(1-x)^{b} d x\right)=\int_{0}^{1} x^{a}(1-x)^{b} d x=I(a, b)
$$

(d)

$$
\begin{gathered}
\mathrm{I}(1,1)=\frac{1}{2} \mathrm{I}(1-1,1+1)=\frac{1}{2} \mathrm{I}(0,2)=\frac{1}{2} \mathrm{I}(2,0)=\frac{1}{2} \int_{0}^{1} x^{2} \mathrm{~d} x=\frac{1}{2}\left(\frac{x^{3}}{3}\right)_{0 \longrightarrow 1}=\frac{1}{6} \\
\mathrm{I}(3,2)=\mathrm{I}(2,3)=\frac{2}{1+3} \mathrm{I}(1,4)=\frac{2}{4} \frac{1}{5} \mathrm{I}(0,5)=\frac{2}{20} \mathrm{I}(5,0)=\frac{2}{20} \int_{0}^{1} x^{5} \mathrm{~d} x=\frac{2}{20} \frac{x^{6}}{6} 0 \longrightarrow 1=\frac{1}{10}
\end{gathered}
$$

(e) Apply result (c) a times and also apply result from part (b) once.

$$
\begin{aligned}
I(a, b)= & \frac{a}{b+1} I(a-1, b+1)=\frac{a}{b+1} \cdot \frac{a-1}{b+2} I(a-2, b+2)=\frac{a}{b+1} \cdot \frac{a-1}{b+2} \frac{a-2}{b+3} I(a-3, b+3)=\cdots= \\
& =\frac{a \cdot(a-1) \cdot(a-2) \cdots 2 \cdot 1}{b \cdot(b+1) \cdot(b+2) \cdots(b+a-1) \cdot(b+a)} I(0, a+b)= \\
= & \frac{a \cdot(a-1) \cdot(a-2) \cdots 2 \cdot 1}{b \cdot(b+1) \cdot(b+2) \cdots(b+a-1) \cdot(b+a)} \cdot \frac{1}{b+a+1}=\frac{a!\cdot b!}{(a+b+1)!}
\end{aligned}
$$

Problem 8.1.91

Let $\mathrm{I}_{\mathrm{n}}=\int x^{n} \cos \left(x^{2}\right) \mathrm{d} x$ and $\mathrm{J}_{n}=\int x^{n} \sin \left(x^{2}\right) \mathrm{d} x$.
(a) Find a reduction formula that expresses I_{n} in terms of J_{n-2}. Hint: Write $\mathrm{X}^{n} \cos \left(\mathrm{x}^{2}\right)$ and $x^{n-1}\left(x \cos \left(x^{2}\right)\right)$.
(b) Use the result of (a) to show that I_{n} can be evaluated explicitly if n is odd.
(c) Evaluate I_{3}.

SOLUTION. (a) Let $u=x^{n-1}, d v=x \cos \left(x^{2}\right) \Longrightarrow d u=(n-1) x^{n-2} d x$ and $d v=\frac{1}{2} d\left(\sin \left(x^{2}\right)\right) \Longrightarrow$ $v=\frac{1}{2} \sin \left(x^{2}\right)$. Applying integration by parts on I_{n} we get:
$I_{n}=\int x^{n-1}\left(x \cos \left(x^{2}\right)\right) d x=x^{n-1} \frac{\sin \left(x^{2}\right)}{2}-\frac{n-1}{2} \int x^{n-2} \sin \left(x^{2}\right) d x=\frac{x^{n-1} \cdot \sin \left(x^{2}\right)}{2}-\frac{n-1}{2} J_{n-2}$
(b) If n is odd then $n-2, n-4, n-6, \ldots, 3,1$ are all odd numbers, and recursively we can relate using result from part (a), I_{n} to $J_{n-2}, J_{n-4}, \ldots, J_{1}$ in the end. And we can easily compute J_{1}, which means that we can easily compute I_{n} for every n odd.
(c)

$$
\begin{aligned}
I_{3} & =x^{2} \sin \left(x^{2}\right) / 2-J_{1}=x^{2} \sin \left(x^{2}\right) / 2-\int x \sin \left(x^{2}\right) d x \\
& =x^{2} \sin \left(x^{2}\right) / 2+\int d\left(\cos \left(x^{2}\right)\right) / 2 \\
& =x^{2} \sin \left(x^{2}\right) / 2+\cos \left(x^{2}\right) / 2+C
\end{aligned}
$$

