MATH 2930, Fall 2018
TA: Aleksandra Niepla
Sections: 212, 217
Name: \qquad

Chapter 2.4, 2.5, 2.6 Review

Objectives: (1) Review theorems regarding existence and uniqueness for first order linear equations (2) Sketch phase lines and classify equilibrium solutions of autonomous differential equations (3) Solve exact differential equations

Part 1- Existence and Uniqueness Theorems

1. Consider a first order linear equation of the form

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

Summarize the hypotheses needed to guarantee the existence and uniqueness of a solution to the above equation.
2. Do the same the following general first order non-linear equation:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

3. Without solving the problem, determine an interval in which a unique solution of the given initial value problem is certain to exist.

$$
\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}, \quad y(-3)=1 .
$$

Part 2- Autonomous Differential Equations and Phase Line Sketches

1. An important class of first order equations consists of those in which the independent variable does not appear explicitly, i.e.

$$
\frac{d y}{d t}=f(y)
$$

Such equations are called \qquad .
2. In the problem below, sketch the graph of $f(y)$ versus y, determine the equilibrium solutions (critical points), and classify each one as asymptotically stable or unstable.

$$
\frac{d y}{d t}=y(y-1)(y-2), \quad y_{0} \geq 0
$$

Part 3- Exact Differential Equations

1. Let M, N, M_{y}, and N_{x} be continuous in the rectangular region R given by $\alpha<x<\beta, \gamma<y<\delta$. Then, the equation

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

Is an exact differential equation in R if and only if \qquad
at each point of R. That is, there exists a function ψ satisfying

$$
\psi_{x}(x, y)=M(x, y) \quad \psi_{y}(x, y)=N(x, y)
$$

The solution is given implicitly as

$$
\psi(x, y)=c
$$

2. Solve the given initial value problem

$$
(2 x-y)+(2 y-x) y^{\prime}=0, \quad y(1)=3
$$

