MATH 2930, Fall 2018
TA: Aleksandra Niepla
Sections: 212, 217
Name: \qquad

Chapter 2.7, 3.1, 3.3 Review

Objectives: (1) Approximate solutions to first order differential equations using Euler's method (2) Practice solving second order linear homogeneous differential equations with constant coefficients

Part 1- Numerical Approximations: Euler's Method

1. Consider the initial value problem

$$
y^{\prime}=0.5-t+2 y, \quad y(0)=1
$$

(i) Find approximate values of the solution of the given initial value problem at $t=0.1,0.2,0.3$, and 0.4 using Euler's method with $h=0.1$. Use the chart below:

n	t_{n}	y_{n}	$f\left(t_{n}, y_{n}\right)$	Line approximation at point $\left(t_{n}, y_{n}\right)$ $y=y_{n}+f\left(t_{n}, y_{n}\right)\left(t-t_{n}\right)$
0	0	1		
1				
2				
3				
4				
4				

(ii) Find the solution $y(t)$ of the given problem and evaluate $y(t)$ at $t=0.1,0.2,0.3$, and 0.4 . Compare your results with those of part (i).

Part 2- Second Order Linear Differential Equations

1. Find the general solution of the given differential equation

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

2. Find the solution of the given initial value problem. Describe its behavior as t increases:

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0 \quad y(1)=1, y^{\prime}(1)=0
$$

3. Find the general solution of the given differential equation

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

4. Determine the values of α, if any, for which all solutions tend to zero as $t \rightarrow \infty$; also determine the values of α, if any, for which all nonzero solutions become unbounded as $t \rightarrow \infty$ for

$$
y^{\prime \prime}-(2 \alpha-1) y^{\prime}+\alpha(\alpha-1) y=0 .
$$

5. Consider the equation $a y^{\prime \prime}+b^{\prime} y+c y=0$, where a, b, and c are constants with $a>0$. Find the conditions on a, b, and c such that the roots of the characteristic equation are:
(i) real, different, and negative.
(ii) real with opposite signs.
(iii) real, different, and positive.

In each case, determine the behavior of the solutions as $t \rightarrow \infty$.
6. Solve the given equation for $t>0$:

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0
$$

Hint: Let $x=\ln t$ and calculate $d y / d t$ and $d^{2} y / d t^{2}$ in terms of $d y / d x$ and $d^{2} y / d x^{2}$.

