MATH 2930, Fall 2018
TA: Aleksandra Niepla
Sections: 212, 217
Name: \qquad

Chapter 2.7, 3.1, 3.3 Review

Objectives: (1) Approximate solutions to first order differential equations using Euler's method (2) Practice solving second order linear homogeneous differential equations with constant coefficients

Part 1- Numerical Approximations: Euler's Method

1. Consider the initial value problem

$$
y^{\prime}=0.5-t+2 y, \quad y(0)=1
$$

(i) Find approximate values of the solution of the given initial value problem at $t=0.1,0.2,0.3$, and 0.4 using Euler's method with $h=0.1$.
(ii) Find the solution $y(t)$ of the given problem and evaluate $y(t)$ at $t=0.1,0.2,0.3$, and 0.4 . Compare your results with those of part (i).
(i) We have the following approximations:

n	t_{n}	y_{n}	$f\left(t_{n}, y_{n}\right)$	Line approximation at point $\left(t_{n}, y_{n}\right)$ $y=y_{n}+f\left(t_{n}, y_{n}\right)\left(t-t_{n}\right)$
0	0	1	2.5	$y=2.5 t+1$
1	0.1	1.25	2.9	$y=1.25+2.9(t-0.1)$
2	0.2	1.54	3.38	$y=1.54+3.38(t-0.2)$
3	0.3	1.878	3.956	$y=1.878+3.956(t-0.3)$
4	0.4	2.2736		

(ii) Rewriting the equation we have:

$$
y^{\prime}-2 y=0.5-t .
$$

Let $\mu(t)=e^{\int-2 d t}=e^{-2 t}$. Then

$$
\left(e^{-2 t} y(t)\right)^{\prime}=0.5 e^{-2 t}-t e^{-2 t}
$$

Integrating both sides and dividing by $e^{-2 t}$ we get:

$$
y(t)=\frac{t}{2}+C e^{2 t}
$$

The initial condition implies that $C=1$. So, the solutions is:

$$
y(t)=t / 2+e^{2 t} .
$$

Moreover, using a calculator we have:

$$
y(0.1)=1.27, y(0.2)=1.59, y(0.3)=1.97, y(0.4)=2.43 .
$$

Part 2- Second Order Linear Differential Equations

1. Find the general solution of the given differential equation

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0 .
$$

The characteristic equation is

$$
r^{2}+2 r-3=0
$$

We factor to find its roots:

$$
r^{2}+2 r-3=0 \Longrightarrow(r+3)(r-1)=0 \Longrightarrow r_{1}=-3, r_{2}=1
$$

So, the general solutions is

$$
y(t)=c_{1} e^{-3 t}+c_{2} e^{t}
$$

2. Find the solution of the given initial value problem. Describe its behavior as t increases:

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0 \quad y(1)=1, y^{\prime}(1)=0
$$

The characteristic equation is

$$
r^{2}+8 r-9-0
$$

We factor to find its roots

$$
r^{2}+8 r-9=0 \Longrightarrow(r+9)(r-1)=0 \Longrightarrow r_{1}=-9, r_{2}=1
$$

Therefore, the general solutions is

$$
y(t)=c_{1} e^{-9 t}+c_{2} e^{t}
$$

Using the two initial conditions provided we obtain the following system of equations:

$$
c_{1} e^{-9}+c_{2} e=1
$$

and

$$
-9 c_{1} e^{-9}+c_{2} e=0
$$

Multiplying the first by 9 and adding to the second gives:

$$
10 e c_{2}=9 \Longrightarrow c_{2}=\frac{9}{10} e^{-1}
$$

Next, we can plug c_{2} into the first equation and solve for c_{1} :

$$
c_{1} e^{-9}+\frac{9}{10}=1 \Longrightarrow c_{1}=\frac{1}{10} e^{9}
$$

So, the final solutions is:

$$
y(t)=\frac{1}{10} e^{-9(t-1)}+\frac{9}{10} e^{t-1} ; y \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty
$$

3. Find the general solution of the given differential equation

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

The characteristic equation is

$$
r^{2}+6 r+13=0
$$

The roots are:

$$
r=\frac{-6 \pm \sqrt{36-4(13)}}{2}=\frac{-6 \pm \sqrt{36-52}}{2}=\frac{-6 \pm \sqrt{-16}}{2}=-3-2 i,-3+2 i
$$

So, the general solutions is

$$
y(t)=c_{1} e^{-3 t} \cos (2 t)+c_{2} \sin (2 t) e^{-3 t}
$$

4. Determine the values of α, if any, for which all solutions tend to zero as $t \rightarrow \infty$; also determine the values of α, if any, for which all nonzero solutions become unbounded as $t \rightarrow \infty$ for

$$
y^{\prime \prime}-(2 \alpha-1) y^{\prime}+\alpha(\alpha-1) y=0 .
$$

The characteristic equation is:

$$
r^{2}-(2 \alpha-1) r+\alpha(\alpha-1)=0
$$

Using the quadratic formula, the roots of this equations are:
$r=\frac{(2 \alpha-1) \pm \sqrt{(2 \alpha-1)^{2}-4(\alpha(\alpha-1))}}{2}=\frac{(2 \alpha-1) \pm \sqrt{4 \alpha^{2}-4 \alpha+1-4 \alpha^{2}+4 \alpha}}{2}=\frac{(2 \alpha-1 \pm 1)}{2}=\alpha, \alpha-1$
So, the general solution to the equation is:

$$
y(t)=c_{1} e^{\alpha t}+c_{2} e^{(\alpha-1) t} .
$$

Assuming that $\alpha \in \mathbb{R}$, all solutions will tend to zero as long as $\alpha<0$. On the other hand, all solutions will become unbounded as long as $\alpha-1>0$, that is $\alpha>1$.
5. Consider the equation $a y^{\prime \prime}+b^{\prime} y+c y=0$, where a, b, and c are constants with $a>0$. Find the conditions on a, b, and c such that the roots of the characteristic equation are:
(i) real, different, and negative.
(ii) real with opposite signs.
(iii) real, different, and positive.

In each case, determine the behavior of the solutions as $t \rightarrow \infty$.
The characteristic equation is

$$
a r^{2}+b r+c=0
$$

Using the quadratic formula the roots are:

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(i) In order for the roots to be real and different we need $b^{2}-4 a c>0$. This gives us the relation: $c<b^{2} / 2 a$. Since $a>0$, it is the numerator that determines the sign of the roots. Since we want them to be negative, we need:
$-b \pm \sqrt{b^{2}-4 a c}<0 \Longrightarrow b^{2}-4 a c<b^{2}$. Since a is positive this only happens when $c>0$. Finally, we need $b>0$. So the conditions are: $b>0,0<c<b^{2} / 4 a$. All solutions of this type will go to zero as $t \rightarrow \infty$.
(ii) To be real with opposite signs, we still need $b^{2}-4 a c>0$. If $b>0$ then you know $-b-\sqrt{b^{2}-4 a c}<0$ and you would need $-b+\sqrt{b^{2}-4 a c}>0 \Longrightarrow c<0$. If $b<0$, then, a similar analysis shows $c<0$. So, the only condition we need is $c<0$. All solutions of this type become unbounded as $t \rightarrow \infty$.
(iii) To be real and different we need $c<b^{2} / 2 a$. For both of them to have positive signs we see right away that we need $b<0$. This are the only two restrictions in this case. Solutions of this type become unbounded as $t \rightarrow \infty$.
6. Solve the given equation for $t>0$:

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0
$$

Hint: Let $x=\ln t$ and calculate $d y / d t$ and $d^{2} y / d t^{2}$ in terms of $d y / d x$ and $d^{2} y / d x^{2}$.
Let $x=\ln (t)$. Then,

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}=\frac{d y}{d x} \frac{1}{t} .
$$

and

$$
\frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{d y}{d x}\right) \frac{1}{t}-\frac{d y}{d x} \frac{1}{t^{2}}=\frac{d^{2} y}{d x^{2}} \frac{1}{t^{2}}-\frac{d y}{d x} \frac{1}{t^{2}}=\frac{1}{t^{2}}\left(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}\right)
$$

Plugging this into the differential equation we obtain:

$$
\frac{d^{2}}{d x^{2}}-\frac{d y}{d x}+4 \frac{d y}{d x}+2 y=0
$$

This is now a homogeneous second order differential equation with characteristic equation: $r^{2}+3 r+2=0$. The roots are $r=-1,-2$. So the general solution is:

$$
y(x)=c_{1} e^{-x}+c_{2} e^{-2 x}
$$

Finally, using that $x=\ln (t)$, we get

$$
y(t)=c_{1} t^{-1}+c_{2} t^{-2}
$$

