MATH 2930, Fall 2018
TA: Aleksandra Niepla
Sections: 212, 217
Name: \qquad

Chapter 3.6, 3.7 Review

Objectives: (1) Using the method of variation of parameters to find a particular solution to second order linear differential equations (2) Talk about why second-order linear differential equations with constant coefficients are worth studying

Part 1: Variation of Parameters

Find the general solution of the following differential equation. When finding a particular solution first use the method of undetermined coefficients, and then use the method of variation of parameters.

1. $y^{\prime \prime}-5 y^{\prime}+6 y=2 e^{t}$
2. $4 y^{\prime \prime}-4 y^{\prime}+y=16 e^{t / 2}$
3. Find the general solution to the equation

$$
y^{\prime \prime}+y=\tan t
$$

Part 2: Mechanical and Electrical Vibrations

1. List some physical problems whose solutions are all described by solutions of the initial value problem:

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), y(0)=0, y^{\prime}(0)=0
$$

2. Describe how the motion of a mass on a spring can be modeled by an equation of the form above.
3. A mass weighing 4 lb stretches a spring 2 in . Suppose that the mass is given an additional 6 in displacement in the positive direction and then released. The mass is in a medium that exerts a viscous resistance of 6 lb when the mass has a velocity of $3 \mathrm{ft} / \mathrm{s}$. Formulate the initial value problem that governs the motion of the mass.
4. Assume that the system described by the differential equation $m u^{\prime \prime}+\gamma u^{\prime}+k u=0$ is either critically damped or overdamped. Show that the mass can pass through the equilibrium position at most once, regardless of the initial conditions. (Hint: Determine all possible values of t for which $u=0$).
