MATH 2930, Fall 2018
TA: Aleksandra Niepla
Sections: 212, 217
Name:

Chapter 4.1-4.3 Review

Objectives: (1) Review the general theory for $n^{t h}$ order linear differential equations (2) Solve homogeneous linear equations with constant coefficients (3) Use the method of undetermined coefficients to solve linear equations with constant coefficients

Part 1: General Theory of $n^{\text {th }}$ Order Linear Differential Equations

1. Determine the intervals where solutions of the following differential equation are sure to exist:

$$
\left(x^{2}-4\right) y^{(6)}+x^{2} y^{\prime \prime \prime}+9 y=0 .
$$

2. Let the linear differential operator L be defined by

$$
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n} y
$$

a. Find $L\left[t^{n}\right]$.
b. Find $L\left[e^{r t}\right]$.
c. Determine four solutions of the equation $y^{(4)}-5 y^{\prime \prime}+4 y=0$. Do you think the four solutions form a fundamental set of solutions? Why?

In each problem below, find the general solution of the given differential equation.

1. $y^{(4)}-4 y^{\prime \prime \prime}+4 y^{\prime \prime}=0$
2. $y^{(5)}-3 y^{(4)}+3 y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0$
3. Show that the general solution of $y^{(4)}-y=0$ can be written as

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+c_{3} \cosh (t)+c_{4} \sinh (t)
$$

Part 3: The Method of Undetermined Coefficients Revisited

In each of the problems below, determine the general solution of the given differential equation.

1. $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=2 e^{-t}+3$
