Chapter 4.1-4.3 Review

Objectives: (1) Review the general theory for $n^{\text {th }}$ order linear differential equations (2) Solve homogeneous linear equations with constant coefficients (3) Use the method of undetermined coefficients to solve linear equations with constant coefficients

Part 1: General Theory of $n^{\text {th }}$ Order Linear Differential Equations

1. Determine the intervals where solutions of the following differential equation are sure to exist:

$$
\left(x^{2}-4\right) y^{(6)}+x^{2} y^{\prime \prime \prime}+9 y=0
$$

Rewriting the equation in standard form, we have

$$
y^{(6)}+\frac{x^{2}}{\left(x^{2}-4\right)} y^{\prime \prime \prime}+\frac{9}{\left(x^{2}-4\right)} y=0 .
$$

The second two coefficient functions are not continuous at $x= \pm 2$. So, The intervals on which solutions are sure to exist are: $(-\infty,-2),(-2,2)$ and $(2, \infty)$.
2. Let the linear differential operator L be defined by

$$
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n} y
$$

a. Find $L\left[t^{n}\right]$.
b. Find $L\left[e^{r t}\right]$.
c. Determine four solutions of the equation $y^{(4)}-5 y^{\prime \prime}+4 y=0$. Do you think the four solutions form a fundamental set of solutions? Why?
a. $L\left[t^{n}\right]=a_{0}(n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1)+a_{1}(n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2) \cdot t+a_{2} n t^{n-1}+\ldots+a_{n} t^{n}$.
b. $L\left[e^{r t}\right]=a_{o} r^{n} e^{r t}+a_{a} r^{n-1} e^{r t}+\ldots+a_{n} e^{r t}$.
c. Using part b. we see that in our case we have $L\left[e^{r t}\right]=\left(r^{4}-5 r^{2}+4\right) e^{r t}$. We see that for each r_{i} satisfying the equation

$$
r^{4}-5 r^{2}+4=0
$$

we have a solution of the form $y_{i}=e^{r_{i} t}$. To find the roots of this equation, set $u=r^{2}$. Then we get a quadratic equation:

$$
u^{2}-5 u+4=(u-4)(u-1)=0 .
$$

So, we discovered two roots: $r_{1}=1$ and $r_{2}=2$. Using this information we can factor (via synthetic division) $r^{4}-5 r^{2}+4$ completely to obtain:

$$
r^{4}-5 r^{2}+4=(r-1)\left(r^{3}+r^{2}-4 r-4\right)=(r-1)(r-2)\left(r^{2}+3 r+2\right)=(r-1)(r-2)(r+1)(r+2)
$$

So, we get the following solutions: $y_{1}=e^{t}, y_{2}=e^{-t}, y_{3}=e^{2 t}, y_{4}=e^{-2 t}$. Yes, they form a fundamental set of solutions because they are linearly independent functions. To check this you can compute the Wronskian and see that it is never zero.

Part 2: Homogeneous Differential Equations with Constant Coefficients

In each problem below, find the general solution of the given differential equation.

1. $y^{(4)}-4 y^{\prime \prime \prime}+4 y^{\prime \prime}=0$

The characteristic equation is $r^{4}-4 r^{3}+4 r^{2}=0$. Factoring completely we obtain:

$$
r^{2}\left(r^{2}-4 r+4\right)=r^{2}(r-2)^{2}
$$

Hence $r=0$ and $r=2$ are two roots each with multiplicity 2. So, the general solutions is: $y(t)=$ $c_{1}+c_{2} t+c_{3} e^{2 t}+c_{4} t e^{2 t}$.
2. $y^{(5)}-3 y^{(4)}+3 y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0$

The characteristic equation is $r^{5}-3 r^{4}+3 r^{3}-3 r^{2}+2 r=r\left(r^{4}-3 r^{3}+3 r^{2}-3 r+2\right)=0$. By inspection we see that $r_{1}=1$ is a root. So using synthetic division we can factor further to obtain:

$$
r\left(r^{4}-3 r^{3}+3 r^{2}-3 r+2\right)=r(r-1)\left(r^{3}-2 r^{2}+r-2\right)
$$

We know that if r is a rational root of the third degree polynomial above then it is a multiple of 2 (See the discussion on p. 176 if you are not sure why this is true). Now, we can factor completely to obtain:

$$
r(r-1)\left(r^{3}-2 r^{2}+r-2\right)=r(r-1)(r-2)\left(r^{2}+1\right)=r(r-1)(r-2)(r-i)(r+i)
$$

So, the general solutions is: $y(t)=c_{1}+c_{2} e^{t}+c_{3} e^{2 t}+c_{4} \cos (t)+c_{5} \sin (t)$.
3. Show that the general solution of $y^{(4)}-y=0$ can be written as

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+c_{3} \cosh (t)+c_{4} \sinh (t)
$$

The characteristic equation is $r^{4}-1=0$. Right away one sees that $r= \pm 1$ are roots. Hence we can factor: $r^{4}-1=(r-1)(r+1)\left(r^{2}+1\right)=(r-1)(r+1)(r-i)(r+i)$.Therefore, the general solutions is:

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)+c_{3} e^{t}+c_{4} e^{-t}
$$

To finish the problem, recall that

$$
\cosh t+\sinh t=e^{t}
$$

and

$$
\cosh t-\sinh t=e^{-t}
$$

Plug this in to the equation above and relabel the constants.

Part 3: The Method of Undetermined Coefficients Revisited

In each of the problems below, determine the general solution of the given differential equation.

1. $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=2 e^{-t}+3$

First, we find the general solution to the homogeneous problem. The characteristic equation is $r^{3}-r^{2}-$ $r+1=0$. By inspection we see that $r=1$ is a solution. Hence we can factor fully to obtain:

$$
r^{3}-r^{2}-r+1=(r-1)\left(r^{2}-1\right)=(r-1)^{2}(r+1) .
$$

Hence the general solution to the homogeneous problem is

$$
y_{H}(t)=c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-t}
$$

Finally we can write a particular solution as the sum of particular solutions to the equations;
$y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=2 e^{-t}$ and $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=3$.
Hence consider $Y_{P}(t)=A t e^{-t}+B$. Note that we multiply the first term by t to distinguish it from the solution e^{-t} already found. So, we have

$$
Y_{P}^{\prime}(t)=A\left(e^{-t}-t e^{-t}\right), Y_{P}^{\prime \prime}(t)=A\left(-2 e^{-t}+t e^{-t}\right), Y_{P}^{\prime \prime \prime}(t)=A\left(3 e^{-t}-t e^{-t}\right)
$$

Plugging in gives:

$$
4 A e^{-t}+B=2 e^{-t}+3
$$

Hence $A=1 / 2, B=3$.
Therefore the general solutions is:

$$
y(t)=y_{H}(t)+y_{P}(t)=c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-t}+\frac{1}{2} t e^{-t}+3 .
$$

