Chapter 5.4, 10.1-10.2 Review

Objectives: (1) To introduce and solve Euler Equations (2) To discuss and solve two-point boundary value problems (3) to introduce Fourier series and find the Fourier series of given functions

Part 1: Solving Euler Equations

Determine the general solution of the given differential equation that is valid in any interval not including the singular point.

1. $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$

Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=r(r-1)-r+1=r^{2}-2 r+1$. The root is $r=1$, with multiplicity two. Hence the general solution, for $x \neq 0$, is $y=\left(c_{1}+c_{2} \ln |x|\right) x$.
2. $(x-2)^{2} y^{\prime \prime}+5(x-2) y^{\prime}+8 y=0$

Substitution of $y=(x-2)^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=r^{2}+4 r+8$. The roots are complex, with $r=-2 \pm 2 i$. Hence the general solution, for $x \neq 2$, is $y=c_{1}(x-2)^{-2} \cos (2 \ln |x-2|)+$ $c_{2}(x-2)^{-2} \sin (2 \ln |x-2|)$.
3. $4 x^{2} y^{\prime \prime}+8 x y^{\prime}+17 y=0$

Substitution of $y=x^{r}$ results in the quadratic equation $F(r)=0$, where $F(r)=4 r^{2}+4 r+17$. The roots are complex, with $r=-1 / 2 \pm 2 i$. Hence the general solution, for $x \neq 0$, is $y=c_{1} x^{-1 / 2} \cos (2 \ln x)+$ $c_{2} x^{-1 / 2} \sin (2 \ln x)$.

Part 2: Two-Point Boundary Value Problems

In each problem below, either solve the given boundary value problem or else show that it has no solutions.

1. $y^{\prime \prime}+2 y=0, y^{\prime}(0)=1, y^{\prime}(\pi)=0$.

The characteristic equation is $r^{2}+2=0 \Longrightarrow r= \pm i \sqrt{2}$. So, the general solution is

$$
y(x)=c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)
$$

The first boundary condition implies

$$
y^{\prime}(0)=c_{2} \sqrt{2}=1 \Longrightarrow c_{2}=\frac{1}{\sqrt{2}} .
$$

The second boundary condition implies

$$
y^{\prime}(\pi)=-c_{1} \sqrt{2} \sin (\sqrt{2} \pi)+\cos (\sqrt{2} \pi)=0 \Longrightarrow c_{1}=\frac{\cot (\sqrt{2} \pi)}{\sqrt{2}} .
$$

So, the solutions is:

$$
y(x)=\frac{1}{\sqrt{2}} \cot (\sqrt{2} \pi) \cos (\sqrt{2} x)+\frac{1}{\sqrt{2}} \sin (\sqrt{2} x)
$$

2. $x^{2} y^{\prime \prime}+5 x y^{\prime}+\left(4+\pi^{2}\right) y=\ln x, \quad y(1)=0, y(e)=0$.

With the change of variables $x=e^{t}$, the ODE can be written as

$$
y^{\prime \prime}+4 y^{\prime}+\left(4+\pi^{2}\right) y=t
$$

with the corresponding initial conditions $y(0)=0$ and $y(1)=0$. The general solution of this ODE is

$$
y(t)=c_{1} e^{-2 t} \cos (\pi t)+c_{2} e^{-2 t} \sin (\pi t)+\frac{t \pi^{2}+4 t-4}{\left(4+\pi^{2}\right)^{2}} .
$$

Imposing the boundary conditions, it is necessary that

$$
c_{1}-\frac{4}{\left(4+\pi^{2}\right)^{2}}=0
$$

and

$$
-e^{-2} c_{1}+\frac{\pi^{2}}{\left(4+\pi^{2}\right)^{2}}=0
$$

Hence no solution exists.
3. Find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues are real,

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(L)=0
$$

Assuming that $\lambda>0$. Setting $\lambda=\mu^{2}$, the general solution of the resulting ODE is $y(x)=c_{1} \cos (\mu x)+$ $c_{2} \sin (\mu x)$, with $y^{\prime}(x)=-\mu c_{1} \sin (\mu x)+\mu c_{2} \cos (\mu x)$. Imposing the first boundary condition, we find that $c_{2}=0$. Therefore, $y(x)=c_{1} \cos (\mu x)$. The second boundary condition gives $c_{1} \cos (\mu L)=0$. For a nontrivial solution, it is necessary that $\cos (\mu L)=0$, that is $\mu=(2 n-1) \pi /(2 L)$, with $n=1,2, \ldots$ Therefore the eigenvalues are

$$
\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}, n=1,2, \ldots
$$

The corresponding eigenfunctions are given by

$$
y_{n}=\cos \frac{(2 n-1) \pi x}{2 L}, n=1,2, \ldots
$$

Part 3: Fourier Series

1. Sketch the graph of the function below for three periods. Then, find the Fourier series for the given function.

$$
f(x)=\left\{\begin{array}{ll}
x+L, & -L \leq x \leq 0, \\
L, & 0 \leq x \leq L ;
\end{array} \quad f(x+2 L)=f(x)\right.
$$

Here is a graph of $f(x)$:
17.(a) For $L=1$,

The Fourier coefficients are calculated using the Euler-Fourier formulas:

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x=\frac{1}{L} \int_{-L}^{0}(x+L) d x+\frac{1}{L} \int_{0}^{L} L d x=3 L / 2 .
$$

For $n>0$,

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x= \\
=\frac{1}{L} \int_{-L}^{0}(x+L) \cos \left(\frac{n \pi x}{L}\right) d x+\frac{1}{L} \int_{0}^{L} L \cos \left(\frac{n \pi x}{L}\right) d x=\frac{L(1-\cos (n \pi))}{n^{2} \pi^{2}} .
\end{gathered}
$$

Likewise,

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x= \\
=\frac{1}{L} \int_{-L}^{0}(x+L) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{1}{L} \int_{0}^{L} L \sin \left(\frac{n \pi x}{L}\right) d x=\frac{-L \cos (n \pi)}{n \pi} .
\end{gathered}
$$

Note that $\cos (n \pi)=(-1)^{n}$. It follows that the Fourier series for the given function is

$$
f(x)=\frac{3 L}{4}+\frac{L}{\pi^{2}} \sum_{n=1}^{\infty}\left[\frac{2}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi x}{L}-\frac{(-1)^{n} \pi}{n} \sin \frac{n \pi x}{L}\right]
$$

