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Chapter 5.4, 10.1-10.2 Review

Objectives: (1) To introduce and solve Euler Equations (2) To discuss and solve two-point boundary value
problems (3) to introduce Fourier series and find the Fourier series of given functions

Part 1: Solving Euler Equations

Determine the general solution of the given differential equation that is valid in any interval not including the
singular point.

1. x2y′′ − 3xy′ + 4y = 0

Substitution of y = xr results in the quadratic equation F (r) = 0, where F (r) = r(r−1)−r+1 = r2−2r+1.
The root is r = 1, with multiplicity two. Hence the general solution, for x 6= 0, is y = (c1 + c2 ln |x|)x.

2. (x− 2)2y′′ + 5(x− 2)y′ + 8y = 0

Substitution of y = (x−2)r results in the quadratic equation F (r) = 0, where F (r) = r2+4r+8. The roots
are complex, with r = −2± 2i. Hence the general solution, for x 6= 2, is y = c1(x− 2)−2 cos(2 ln |x− 2|) +
c2(x− 2)−2 sin (2 ln |x− 2|).

3. 4x2y′′ + 8xy′ + 17y = 0

Substitution of y = xr results in the quadratic equation F (r) = 0, where F (r) = 4r2 + 4r + 17. The
roots are complex, with r = −1/2± 2i. Hence the general solution, for x 6= 0, is y = c1x

−1/2 cos (2 lnx) +
c2x
−1/2 sin (2 lnx).

Part 2: Two-Point Boundary Value Problems

In each problem below, either solve the given boundary value problem or else show that it has no solutions.

1. y′′ + 2y = 0, y′(0) = 1, y′(π) = 0.

The characteristic equation is r2 + 2 = 0 =⇒ r = ±i
√

2. So, the general solution is

y(x) = c1 cos (
√

2x) + c2 sin (
√

2x).

The first boundary condition implies

y′(0) = c2
√

2 = 1 =⇒ c2 =
1√
2
.

The second boundary condition implies

y′(π) = −c1
√

2 sin(
√

2π) + cos (
√

2π) = 0 =⇒ c1 =
cot (
√

2π)√
2

.

So, the solutions is:

y(x) =
1√
2

cot (
√

2π) cos (
√

2x) +
1√
2

sin (
√

2x).

2. x2y′′ + 5xy′ + (4 + π2)y = lnx, y(1) = 0, y(e) = 0.

With the change of variables x = et, the ODE can be written as

y′′ + 4y′ + (4 + π2)y = t,

with the corresponding initial conditions y(0) = 0 and y(1) = 0. The general solution of this ODE is

y(t) = c1e
−2t cos (πt) + c2e

−2t sin (πt) +
tπ2 + 4t− 4

(4 + π2)2
.



Imposing the boundary conditions, it is necessary that

c1 −
4

(4 + π2)2
= 0,

and

−e−2c1 +
π2

(4 + π2)2
= 0.

Hence no solution exists.

3. Find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues
are real,

y′′ + λy = 0, y′(0) = 0, y(L) = 0.

Assuming that λ > 0. Setting λ = µ2, the general solution of the resulting ODE is y(x) = c1 cos(µx) +
c2 sin(µx), with y′(x) = −µc1 sin(µx) + µc2 cos(µx). Imposing the first boundary condition, we find that
c2 = 0. Therefore, y(x) = c1 cos (µx). The second boundary condition gives c1 cos (µL) = 0. For a nontrivial
solution, it is necessary that cos (µL) = 0, that is µ = (2n − 1)π/(2L), with n = 1, 2, ... Therefore the
eigenvalues are

λn =
(2n− 1)2π2

4L2
, n = 1, 2, ....

The corresponding eigenfunctions are given by

yn = cos
(2n− 1)πx

2L
, n = 1, 2, ....

Part 3: Fourier Series

1. Sketch the graph of the function below for three periods. Then, find the Fourier series for the given
function.

f(x) =

{
x+ L, −L ≤ x ≤ 0,
L, 0 ≤ x ≤ L;

f(x+ 2L) = f(x).

Here is a graph of f(x) :

The Fourier coefficients are calculated using the Euler-Fourier formulas:
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a0 =
1

L

∫ L

−L
f(x)dx =

1

L

∫ 0

−L
(x+ L)dx+

1

L

∫ L

0

Ldx = 3L/2.

For n > 0,

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx =

=
1

L

∫ 0

−L
(x+ L) cos

(nπx
L

)
dx+

1

L

∫ L

0

L cos
(nπx
L

)
dx =

L(1− cos (nπ))

n2π2
.

Likewise,

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx =

=
1

L

∫ 0

−L
(x+ L) sin

(nπx
L

)
dx =

1

L

∫ L

0

L sin
(nπx
L

)
dx =

−L cos (nπ)

nπ
.

Note that cos (nπ) = (−1)n. It follows that the Fourier series for the given function is

f(x) =
3L

4
+

L

π2

∞∑
n=1

[
2

(2n− 1)2
cos

(2n− 1)πx

L
− (−1)nπ

n
sin

nπx

L

]
.
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