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1 Introduction

The Calderón-Zygmund decomposition, named after Alberto Calderón and his
advisor Antoni Zygmund, is a key result in the analysis of singular integrals,
Fourier analysis, and harmonic analysis. The idea of this decomposition is to
break up an arbitrary integrable function into a “good” part and a “bad” part,
and use different techniques to analyze each of them.

Specifically, if we are given a function f : Rd → C and an altitude α, we
write f = g + b, where |g| is pointwise bounded by a constant multiple of α.
Moreover b can be large, but it has two useful properties: it is supported in a
set of small measure, and its mean value is zero on each of the balls that make
up its support.

All the proofs and constructions of this essay are taken from [St]. The goal
is to summarize the main ideas and theorems from the first few sections of the
text, regarding the Calderón-Zygmund decomposition.

2 Preliminaries

2.1 Basic Assumptions

To begin, we consider the collection of Euclidean balls {B(x, δ)}δ in Rn. Where,
as usual we take B = B(x, δ) to be the ball, centered at x of radius δ. Then,
taking µ to be the Euclidean measure, we see that this family of balls satisfies
the following: There exist constants c1 and c2, both greater than 1, so that, for
all x, y, and δ,

(i) B(x, δ) ∩B(y, δ) 6= ∅ implies B(y, δ) ⊂ B(x, c1δ).
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(ii) µ(B(x, c1δ)) ≤ c2µ(B(x, δ)).

(iii) ∩δB(x, δ) = {x} and ∪δB(x, δ) = Rn.

(iv) For each open set U and each δ > 0, the function x→ µ({B(x, δ)∩U})
is continuous.

Statement (i) guarantees the engulfing property that is needed to prove the
Vitali-type covering lemmas seen in the next section, while assumption (ii) rep-
resents the fact that µ is a “doubling” measure. An equivalent way of stating
property (ii) is with the inequality µ(B(x, 2δ)) ≤ c′2µ(B(x, δ)), from which the
terminology “doubling” originates.

In what follows, we generalize the collection above. That is, for each x ∈
Rn, let {B(x, δ)}δ be a collection of nonempty, open, bounded subsets of Rn,
parametrized by δ, 0 < δ < ∞. We suppose that these generalized “balls” are
monotonic in δ in the sense that B(x, δ1) ⊂ B(x, δ2) whenever δ1 < δ2. We also
assume that we are given a nonnegative Borel measure µ with the property that
µ(Rn) > 0. Finally, we take the properties above as postulates. To see examples
of such collections (other than Euclidean balls with the standard Euclidean
measure) see p. 9 of [St].

2.2 Additional Definitions

It follows from the properties above that for any locally integrable f , and any
δ > 0, the mean value

(Aδ)f(x) =
1

µ(B(x, δ))

∫
B(x,δ)

f(y)dµ(y)

is a continuous function of x.

In addition, we define the maximal function, by

(Mf)(x) = sup
δ>0

Aδ(|f |)(x).

We also defined the larger “uncentered” maximal function M̃f as follows

(M̃f)(x) = sup
x∈B

1

µ(B)

∫
B

|f(y)|dµ(y).

Moreover, we have that (Mf)(x) ≤ (M̃f)(x).
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3 Covering lemmas

In this section, we show the reasoning for the postulates chosen in the previous
section by introducing Vitali and Whitney type covering lemmas, along with
some of their consequences. First, we consider the simplest of these covering
lemmas, a finite version of the Vitali lemma.

Lemma 3.0.1 Let E be a measurable subset of Rn that is the union of a finite

collection of balls {Bj}. Then one can select a disjoint subcollection B1, . . . , Bm

of the {Bj} so that

m∑
k=1

µ(Bk) ≥ cµ(E).

Here c is a positive constant.

Proof. Can be proven using postulates (i) and (ii) above. A full proof can be
found on p. 12 of [St.]

�
The lemma just stated allows us to obtain some fundamental results about

averages Aδ(f) and the maximal function M(f) = supδ Aδ(|f |).

Theorem 3.0.2 Let f be a function defined on Rn.

(a) If f ∈ Lp, 1 ≤ p ≤ ∞, then M(f) is finite almost everywhere.

(b) If f ∈ L1, then for every α > 0,

µ({x : (Mf)(x) > α}) ≤ c2
α

∫
Rn

|f(y)|dµ(y)

(c) If f ∈ Lp, 1 ≤ p ≤ ∞, then M(f) ∈ Lp and

||M(f)||p ≤ Ap||f ||p

where the bound Ap depends only on c2 and p.

Proof. See p. 13. Note that the proof shows the inequalities of the theorem
hold for the larger “uncentered” function M̃f. We will use this fact in the next
section.

�
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Corollary 3.0.3 If f is locally integrable with respect to dµ, then

limδ→0(Aδf)(x) = f(x)

for almost every x.

In order to prove the generalized Calderón-Zygmund decomposition, we will
need a stronger covering lemma. In the lemma that follows the idea is that if
we are given a nonempty closed set F , then we can “cover” F c by a collection of
balls that are almost disjoint, and whose sizes are comparable to their distances
from the set F.

As pointed out in [St], in the standard setting of Rn, the covering of F c can
be done by closed cubes whose interiors are disjoint and whose side lengths are
comparable to their distances from the set F.

For the general setting it is more complicated. We start by fixing a pair
of positive constants c∗ and c∗∗ (with 1 ≤ c∗ ≤ c∗∗), which will depend only
the quantity c1 appearing in assumption (i), and not the particular set F in
question. Using them, for any ball B we define the balls B∗ and B∗∗ that have
the same “centers” as B but whose “radii” are expanded by the factors c∗ and
c∗∗ respectively. More precisely, if B = B(x, δ) then we define B∗ = B(x, c∗δ)
and B∗∗ = B(x, c∗∗δ).

Lemma 3.0.4 Given F , a closed nonempty set, there exists a collection of balls

B1, . . . , Bk, . . . so that

(a) The Bk are pairwise disjoint.

(b)
⋃
k B
∗
k = O = F c

(c) B∗∗k ∩ F 6= ∅, for each k.

Proof. Denote F c = O. Following the proof of Stein, we start by choosing ε
small enough; later it will be determined that ε = 1

8c21
will work. With ε fixed,

consider the covering {B(x, εδ(x))}x∈O of O, where δ(x) is the “distance” of x
from F , namely, δ(x) = sup{δ : B(x, δ) ⊂ O}. By postulate (iii), we have that
for each x ∈ O the function δ(x) is strictly positive and finite.

Next, choose a maximal disjoint subcollection of {B(x, εδ(x)))}x∈O; for this
subcollection, consider B1, . . . , Bk, . . . with Bk = B(xk, εδ(xk)), we will prove
(a), (b), and (c) for this choice of {Bk}k. Set c∗ = 1

2ε , c
∗∗ = 2

ε . Then, we have
B∗k = B(xk, δ(xk)/2), and B∗∗k = B(xk, 2δ(xk)),
Notice that (a) and (c) hold automatically by the choice of Bk. It is also

clear that B∗k ⊂ O; so, what is left is to show that O ⊂
⋃
k B
∗
k .

Now let x ∈ O; then, by the maximality of the collection {Bk},
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B(xk, εδ(xk)) ∩B(x, εδ(x)) 6= ∅
for some k.

Then, δ(xk) ≥ δ(x)
4c1

. Since, if not, taking ε < 1
2c1

(< 1), we have

B(xk, δ(xk)) ∩B(x,
δx

2c1
) 6= ∅.

Since 2δ(xk) < δ(x)
2c1

, by the engulfing property

B(xk, 2δ(xk)) ⊂ B(x,
δ(x)

2
),

which gives a contradiction sinceB(xk, 2δ(xk)) intersects F = Oc, whileB(x, δ(x)2 ⊂
O.

Using 4c1εδ(xk) ≥ εδ(x) and the engulfing property again gives

x ∈ B(xk, c14c1εδ(xk)).

We take B(xk, c14c1εδ(xk)) = B∗k = B(xk, δ(xk)/2); i.e., c∗ = 4c21, ε = 1
2c∗ =

1
8c21
, c∗∗ = 4c∗ = 16c21, finishing the proof.

�

4 The Generalized Calderón-Zygmund Decom-

position

Finally, we are ready to make precise the generalized Calderón-Zygmund de-
composition that was discussed in the introduction.

Theorem 4.0.1 Suppose we are given a function f ∈ L1 and a positive number

α, with

α >
1

µ(Rn)

∫
Rn

|f |dµ.

Then there exists a decomposition of f , f = g + b, with b =
∑
k bk, and a

sequence of balls {B∗k}, so that

1. |g(x)| ≤ cα, for a.e. x

2. Each bk is supported in B∗k ,

∫
|bk(x)|dµ(x) ≤ cαµ(B∗k), and

∫
bk(x)dµ(x) = 0.
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3.
∑
k µ(B∗k) ≤ c

α

∫
|f(x)|dµ(x).

Proof. Let Eα = {x : M̃f(x) > α}, where M̃ is the uncentered maximal func-
tion defined in section 2. Eα is an open set, we will start by considering the
case when its complement is nonempty.

We can apply the lemma 3.0.2 to O = Eα. So, we obtain collection of balls
{Bk}, {B∗k}. Moreover, we will leave it as an exercise that we can construct a
collection of “cubes” {Qk}, such that the Qk are disjoint, their union is O, and
Bk ⊂ Qk ⊂ B∗k . It follows that∑

k

µ(Bk) ≤ µ(Eα). (1)

Now define g(x) = f(x) for x /∈ Eα, and

g(x) =
1

µ(Qk)

∫
Qk

f(y)dµ(y),

if x ∈ Qk.
Hence f = g +

∑
bk, where

bk(x) = χQk
[f(x)− 1

µ(Qk)

∫
Qk

f(y)dµ(y)], (2)

with χQk
denoting the characteristic function of Qk.

From the differentiation theorem, we have |f(x)| ≤ α for a.e. x ∈ (
⋃
Qk)c =

{x : M̃f(x) ≤ α}. So |g(x)| ≤ α for x ∈ (
⋃
Qk)c. Next we observe that

1

µ(B∗∗k )

∫
B∗∗

k

|f(x)|dµ(x) ≤ α (3)

because the ball B∗∗k intersects Ecα.

So from 3, and the fact that Bk ⊂ Qk ⊂ B∗∗k . Also,∫
|bk(x)|dµ(x) ≤ 2

∫
Qk

|f(x)|dµ(x) ≤ cαµ(B∗k)

by 3 and the doubling property. Moreover, that
∫
bk(x)dµ(x) = 0 is obvious

from 2. Hence the second part of the theorem is proved. Again by the doubling
property,

∑
µ(B∗k) ≤ cµ({M̃f > α}) because of 1, and the quantity on the

right is dominated by (c/α)
∫
|f |dµ, as we see using theorem 3.0.2. So, we have

proven the theorem in the case that {x : M̃f(f) ≤ α} 6= ∅.

Finally, we now consider the remaining case when {x : M̃f(x) > α} = Rn
(which can happen only when µ(R)n) <∞), then we see by theorem 3.0.2 that
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µ(R)n ≤ c

α

∫
(R)n
|f |dµ.

So, we get the decomposition f = g + b1, with

g =
1

µ(R)n

∫
(R)n

fdµ,

b1 = f−g; here b1 is supported in the “ball” B∗1 = Rn. Our assumption that

α >
1

µ(R)n

∫
(R)n
|f |dµ

guarantees that |g| ≤ α.
�

5 Application

In this section we describe, without much detail, a standard application of the
Calderón-Zygmund decomposition. First we state from [St] a weaker version of
the Riesz-Thorin interpolation theorem covered in class. This theorem is called
the Marcinkiewicz interpolation theorem, and it is formulated as follows:

Theorem 5.0.1 Let T be a bounded linear operator from Lp to Lp,w and at the

same time from Lq to Lq,w. Then T is also a bounded operator from Lr to Lr.

This theorem is often used to extend operators, such as the fractional integral
operators defined below.

Definition 5.0.2 When 0 < n < d, we define the fractional integral operator

Fα for 0 < α < n by

Fαf(x) =

∫
Rd

f(y)

|x− y|(n−α)
dµ(y), x ∈ Rd.

It turns out that the hypothesis of the Marcinkiewicz interpolation theo-
rem is easy to show in the case of fractional integral operators. However, if we
consider the case when α = 0 in the definition above, we get what is called a
singular integral operator. Singular integrals were also introduced by Calderón
and Zygmund, and an extensive discussion of them can be found in [St]. How-
ever, in this case the hypothesis of the Marcinkiewicz interpolation theorem is
not as easy to show. In fact, the hypothesis is established by a direct application
of the Calderón-Zygmund decomposition, and hence allows us to extend these
operators as well. The detailed proof of this can be found on p. 20 of [St].
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