
FLEXIBILITY AND RIGIDITY IN SYMPLECTIC AND CONTACT

GEOMETRY

Idea: some phenomena in symplectic and contact geometry are rigid (similar in spirit to
algebraic geometry), and some are flexible (similar to differential topology). Often hard to
tell where the boundary is.

1. Symplectic and contact manifolds

Definition. A symplectic structure on a rank 2k vector bundle E → M is a symplectic
form (anti-symmetric and non-degenerate) ωp on each fiber Ep, depending smoothly on p.

The existence of a symplectic structure is equivalent to each of the following two properties:

● the existence of a reduction of the structure group of E from GL(2k) to Sp(2k,R);
● the existence of an (almost) complex structure on E: J ∈ End(E) s.t. J2 = −Id

(secretly, this equivalence is the fact that Sp(2k,R) deformation retracts onto
U(k,C)).

Note: Rank 2k symplectic vector bundles on M are classified by Ȟ1(M ;Sp(2k,R)).

Example. Ȟ1(M ;Sp(2,R)) ≡ Ȟ1(M ;U(1;C)) ≡H2(M ;Z) given by the first Chern class.
H2(M ;Z) ≡ [M,BZ] ≡ [M,CP∞] ≡ V ect1C(M) =H1(M ;U(1))

Definition. An almost symplectic structure on a manifold M2n is a symplectic structure
on TM →M (ie, a non-degenerate ω ∈ Ω2(M) that is not necessarily closed).

Note: Every symplectic manifold is almost symplectic.

Definition. An almost contact strucutre on an oriented manifold V 2n+1 is a hyperplane
distribution ξ2n ⊂ TV and a symplectic structure on the vector bundle ξ → V .

Note: This is slightly incorrect. This is only (kind of) the definition of a cooriented almost
contact structure. This is analogous to the difference between a contact structure ξ and
a contact form α (s.t. kerα = ξ). Apart from this point, every contact manifold is almost
contact.

Note: This is equivalent to being able to reduce structure group of TV from GL+(2n+1,R)
to U(n,C) × Id.

Theorem (Gromov). Every almost symplectic structure on M2n is homotopic through
almost symplectic structures to a symplectic structure (in any chosen cohomology class in
H2(M ;R)), if M is open. Every almost contact structure on V 2n+1 is homotopic through
almost contact structures to a contact structure, if V is open.
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Note: This is an example of an h-principle (for homotopy equivalence). It morally says
that the existence of symplectic and contact structures on open manifolds is flexible.

Note: Idea of proof: dimensional reduction: construct symplectic/contact structure on
neighborhood of a codimension 1 skeleton (by induction on dimension of cells). Use inverse
of deformation retraction to extend to the whole manifold.

If the manifolds are closed, then the existence questions are much more subtle. Often there
are no h-principles (think of as a rigidity phenomenon). The following result was obtained
using Seiberg–Witten theory:

Theorem (Taubes). The connected sum of an odd number of copies of CP 2 does not
admit a symplectic structure (even though it admits an almost symplectic structure and a
cohomology class β ∈H2(M) such that β2 ≠ 0.)

Unrelated open question: S6 admits an almost complex structure. Does it admit a
complex structure?

Closed contact 3-manifolds.

Definition. A contact 3-manifold (V 3, ξ) is overtwisted if there is an embedding D ↪ V
of a closed disk, which is tangent to ξ along BD.

Note: Model: α = cos rdz + r sin rdθ in cylindrical coordinates (on disk of radius π, ξ does
a half twist along each ray; characteristic foliation has rays from origin in all directions
and singular points at origin and along perimeter of disk).

In what follows, V is a closed 3-manifold.

Theorem (Eliashberg). Every homotopy class of 2-plane fields in TV is homotopic to an
overtwisted contact structure on M (unique up to homotopy).

Note: This is an h-principle for overtwisted contact manifolds.

Corollary (Lutz–Martinet). Every 3-manifold admits a contact structure.

Note: There has been a lot of recent work on trying to extend this to higher dimensions.
There are 5-dimensional analogues by Casals–Pancholi–Presas and by Etnyre.

Definition. Contact 3-manifolds that are not overtwisted are called tight.

Example. (S3, ξstd); more generally, symplectically fillable contact 3-manifolds are tight.

Note: There is no h-principle for tight contact manifolds. Their classification is harder
(and more rigid) – Colin, Eliashberg, Etnyre, Giroux, Honda, ... (convex surfaces):

Theorem (Eliashberg). Every tight contact structure on S3 is homotopic to ξstd.

Theorem (Colin, Giroux, Honda). For every manifold V 3, there are only finitely many
homotopy classes of plane fields that contain tight contact structures.
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2. Lagrangian and Legendrian submanifolds

Let (M2n, ω) be symplectic.

Definition. An almost (or formal) Lagrangian immersion is a commutative diagram

TL
F
> TM

L
∨

f
> M

∨

such that

(1) F covers f and is a linear injection on every fiber;
(2) for every p ∈ L, F (TpL) ⊂ Tf(p)M is a Lagrangian subspace;

(3) [f∗ω] = 0 ∈H2(L;R).

Theorem (Gromov). Every almost Lagrangian immersion is homotopic through almost
Lagrangian immersions to a Lagrangian immersion.

Note:

● this a an h-principle for Lagrangian immersions (which are thus flexible);
● there is a similar h-principle for Legendrian immersions;
● there is also an h-principle for subcritical isotropic embeddings;
● there is also an h-principle for ε-Lagrangian and ε-Legendrian embeddings;
● there is NO (general) h-principle for Lagrangian and Legendrian) embeddings!!

(Murphy: h-principle for loose Legendrian embeddings.)
● rigidity results for Lagrangian embeddings are often obtained using pseudo-holomorphic

curves and Floer homology.

Theorem (Gromov). If H1(L;R) = 0 (e.g. if L = Sn, n > 1), then there is no Lagrangian
embedding of L into (R2n, ωstd).

Note: The theorem is a rigidity result.

Note: There are Lagrangian immersions of Sn into (R2n, ωstd) with only one double point
(a self-intersection of two branches).

3. Other rigidity results

Definition. B2n(r) ∶= {(x1, y1, . . . , xn, yn) ∈ R2n ∣ ∑n
i=1(x2i + y2i ) ≤ r}.

One of the first symplectic rigidity results, using pseudo-holomorphic curves:

Theorem (Gromov’s non-squeezing). If B2n(r) embedds symplectically into R2n−2×B2(R),
then r ≤ R.

A non-trivial consequence:

Theorem (Eliashberg–Gromov). Let (M2n, ω) be symplectic. The space Symp(M,ω) of
symplectomorphisms is C0-closed in the space Diff(M) of diffeomorphisms.
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Theorem (Arnold conjecture). Let (M2n, ω) be symplectic. Let L be a Lagrangian sub-
manifold such that [ω] vanishes on π2(M,L). Let ψ ∶ M → M be a Hamiltonian diffeo-
morphism. Then

● (Gromov). ψ(L) ∩L ≠ ∅;
● (Floer). if ψ(L) ⋔ L, then ∣ψ(L) ∩L∣ ≥ ∑n

i=0 dimHi(L;Z2).

4. Summing up

● flexibility: h-principles (differential topology);
● rigidity: pseudo-holomorphic curves, symplectic invariants (symplectic topology);
● usually, when there is flexibility, any relevant symplectic invariants are trivial (eg:

overtwisted contact manifolds have trivial SFT invariants, surgery on loose Legen-
drians does not change symplectic homology, . . . ).
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Symplectic and contact manifolds

● define almost symplectic manifold and almost contact manifold
● give simple example of classification of almost symplectic or contact manifolds
● state h-principle for open symplectic and contact manifolds. This is a case of

flexibility.
● talk about existence problem for closed symplectic manifolds. Mention examples

from Salamon’s notes. Mention alsofollowing: CP 4, S6. Emphasize on rigidity.

Closed contact manifolds.

● overtwisted 3-manifolds
● Yasha’s classification. Case of flexibility.
● Tight contact 3-manifolds: classification results using dividing surfaces. Case of

rigidity
● Higher dimensions: There seems to be analogue of overtwisted flexibility

Lagrangian and Legendrian submanifolds

● state h-principle for subcritical isotropic embeddings
● state h-principle for Lagrangian immersions and ε-embeddings. Case of flexibility
● implies h-principle for Legendrian immersions
● mention Gromov’s inexistence of exact tori in R2n. Uses pseudo-holomorphic

curves. Case of rigidity
● mention Arnold conjectures about Lagrangian intersections. Floer homology. Case

of rigidity
● Murphy’s loose Legendrians. Source of flexibility

Gromov’s non-squeezing

Case of rigidity. Uses pseudo-holomorphic curves. Implies rigidity of Symp in Diff .

Summing up

● flexibility: h-principles (differential topology)
● rigidity: pseudo-holomorphic curves, symplectic invariants (symplectic topology)
● usually, when there is flexibility, the relevant symplectic invariants are trivial (eg:

overtwisted disks, loose Legendrians)
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Flexibility: - open symplectic and contact manifolds (h-Principle) - overtwisted contact 3-
manifolds (classified by homotopy classes of plane fields) - contact 5-manifolds - upcoming:
overtwisted contact manifolds in any dimension!! - Lagrangian and Legendrian immersions
- ε-Lagrangian embeddings
Rigidity - closed symplectic manifolds (look through Salamon’s text) - tight contact 3-
manifolds - Lagrangian embeddings (Floer homology) - holomorphic curves: non-squeezing
and rigidity of symp in diffeo
Think: open problems (existence problem for closed symplectic manifolds), useful examples
(S6)
Arnold Liouville


