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1 Nonsqueezing Theorem4

We are interested in symplectic embedding so what is symplectic embedding? Recall that an embedding5

is an immersion which is a homeomorphism onto its image. A symplectic embedding is an embedding6

that preserves the symplectic structures, i.e. φ : (M,ω)→ (M ′, ω′) is a symplectic embedding if and only7

if φ : M →M ′ is an embedding and φ∗(ω′) = ω.

8

Theorem 1.1 (Nonsqueezing theorem). If there is a symplectic embedding9

B2n(r) ↪→ Z2n(R),

then10

r ≤ R

where Z2n = B2 × R2n−2.11

Proof. (sketch) We are interested in proving this for dimension 4, which can be generalized in higher12

dimension. Suppose that there is a symplectic embedding13

φ : B4(1)→ Z4(r) = D2(r)× R2.

Then we need to show that r ≥ 1. Equivalently, by slightly increasing r, we may suppose that the14

image of the ball lies inside the cylinder, and then we need to show that r > 1. We need the following15

ingredients:16

Slicing cylinders: Let (Z(r), ω0) be the cylinder in (R4, ω0), and let J be any ω0-tame almost complex17

structure (tame means ω0(u, Ju) 6= 0, ∀u 6= 0) on Z(r) that equals the usual structure outside a compact18
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subset of the interior of Z(r). Then there is a J-holomorphic disc f : (D2, ∂D2) → (Z(r), ∂Z) of sym-19

plectic area πr2 through every point of Z(r).20

Minimal surfaces We say f :
∑
→ (M,J) is J-holomorphic if it satisfies ∂f

∂x + J ∂f∂y = 0. We think21

of J-holomorphic curves as minimal surfaces because the area of f(
∑

) with respect to the associated22

metric gJ equals its symplectic area. Since the symplectic area of a surface is invariant under deforma-23

tions of the surface that fix its boundary, the metric area can only increase under such deformations, so24

J-holomorphic curves is so-called gJ -minimal surfaces.25

Let g0 be the usual Euclidean metric on R4. Suppose that S is a g0 minimal surface in the ball B of26

radius 1 that goes through the center of the ball and has the property that its boundary lies on the27

surfaces of the ball. Then the g0-area of S is ≥ π. Note that the g0-minimal surface of least area that28

goes through the center of a unit ball is a flat disc of area π.29

30

We shall prove r > 1 by using J-holomorphic slices as described above, but where J is chosen very31

carefully. In order to make the slicing arguments work, we need our J to equal the standard Euclidean32

structure J0 near the boundary of Z(r) and also outside a compact subset of Z(r). But because the33

image φ(B) of the ball is strictly inside the cylinder, we can also make J equal to any specified ω0-tame34

almost complex structure on φ(B). In particular, we may assume that J equals the pushforward of the35

standard structure φ∗(J0) on φ(B), i.e., inside the embedded ball J is ”standard”.36

Then, the statement above about slicing cylinders says that there is a J-holomorphic disc37

f : D2 → Z(r), f(0) = φ(0),

that goes through the image φ(0) of the center of the ball and also has boundary on the boundary of the38

cynlinder. Further, the symplectic area of the slice C = f(D2) is πr2.39

40

Now consider the intersection CB := C ∩ φ(B) of the slice with the embedded ball φ(B). By con-41

struction, this goes through the image φ(0) of the center 0 of the ball B. We now look at this situation42

from the vantage point of the original ball B. Consider the inverse image S := φ−1(CB). The rest of our43

argument involves understanding the properties of this curve S in B.44

45

S is holomorphic with respect to the usual complex structure J0 on R4 = C2. This follows from our46

choice of J : by construction, J equals the pushforward of J0 on the image of φ(B) of the ball, and so,47
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because CB lies in φ(B) and is J-holomorphic, it pulls back to a curve S that is holomorphic with respect48

to the pullback structure J0.49

50

This means that S is a minimal surface with respect to the standard metric g0 on R4 associated to51

ω0 and J0. So the area of S with respect to g0 is at least π. Since S is holomorphic, this metric area is52

the same as its symplectic area ω0(S). Since φ preserves ω0, this equals the ω0-area of the image curve53

φ(S) = CB .54

55

By construction, CB is just part of the J-holomorphic slice C through φ(0). It follows that CB has56

strictly smaller ω0-area than C. But our basic theorem about slices say that ω0(C) = πr2. Putting this57

all together, we have the following:58

π ≤ g0-area S = ω0-area S = ω0-area φ(S) < ω0-area C = πr2.

Thus, π < πr2 so r > 1.59

Remark 1.2. There is no analogue of this result when the splitting R2n = R2×R2n−2 is not symplectic.60

For example consider the Lagrangian splitting R2n = Rn × Rn. Then for every δ < 0, the map (x, y)→61

(δx, δ−1y) is a symplectic embedding of B2n(1) into Bn(δ)× Rn.62

Remark 1.3. Recently, this theorem has been extended Lalonde and McDuff to arbitrary symplectic63

manifold (M,ω) of dimension 2n. If there is a symplectic embedding64

B2n+2(r) ↪→ B2(R)×M

then r ≤ R.65

Example 1.4. Polterovich observed that, given any r, once can construct a symplectic embedding66

B2n+2(r) ↪→ T2(1)× R2n

in the following way. Find a linear Lagrangian subspace L of R2×R2n whose ε-neighbourhood Lε projects67

injectively onto R2/Z2 × R2n = T2(1)× R2n. Then consider a composite map68

B2n+2(r) ↪→ Lε ↪→ T2(1)× R2n.

Symplectic Camel Principle: [Due to Gromov] It is impossible to move a ball of radius ≥ 1 symplec-69

tically from one side of the wall W to the other. The wall with a hole removed is given by70

W = {(x1, x2, x3, x4) ∈ R4 : x1 = 0, x22 + x23 + x24 ≥ 1}.

But for volume preserving, you can by imaging it in 3-dimensional case and a sufficiently flexible ballon71

through any small hole while preserving its volume.72

2 Symplectic Capacities73

Gromov’s nonsqueezing theorem gave rise to the following definition which is due to Ekeland and Hofer.74

A symplectic capacity is a functor c which assigns to every symplectic manifold (M,ω) a nonnegative75

(possible infinite) number c(M,ω) and satisfies the following condition.76
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• (monotonicity) If there is a symplectic embedding (M1, ω1) ↪→ (M2, ω2) and dimM1 = dimM277

then c(M1, ω1) ≤ c(M2, ω2).78

79

• (conformality) c(M,λω) = λc(M,ω).80

81

• nontriviality c(B2n(1), ω0) > 0 and c(Z2n(1), ω0) <∞.82

From this definition, it isn’t clear that capacities exist. However, the existence of a symplectic capacity83

with84

c(B2n(1), ω0) = c(Z2n, ω0) = π

is equivalent to Gromov’s nonsqueezing theorem. How so? If there is such a capacity then, by the85

monotonicity, the ball B2n(1) cannot be symplectically embedded in Z2n(R) unless R ≥ 1. Conversely,86

define the Gromov width of a symplectic manifold (M,ω) by87

wG(M,ω) = wG(M) = sup{πr2 | B2n(r) embeds symplectically in M}.

The associated invariant sup{πr2 | B2n(r) embeds symplectically in M} is often called the symplectic88

radius. The Gromov width clearly satisfies the monotonicity and conformality axioms and satisfies the89

nontriviality axion by the Nonsqueezing theorem.90

Example 2.1. wG(B2n(1)) = π.91

Example 2.2. wG(S2(πr2)× T2n(πR2)) = πr2.92

There are other important capacities such as the Hofer-Zehnder capacity cHZ , the Ekeland-Hofer93

capacity cEH and the embedded contact homology capacity cECH . But I think we run out of time....94
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