1 Nonsqueezing Theorem

We are interested in symplectic embedding so what is symplectic embedding? Recall that an embedding is an immersion which is a homeomorphism onto its image. A symplectic embedding is an embedding that preserves the symplectic structures, i.e. $\phi:(M, \omega) \rightarrow\left(M^{\prime}, \omega^{\prime}\right)$ is a symplectic embedding if and only if $\phi: M \rightarrow M^{\prime}$ is an embedding and $\phi^{*}\left(\omega^{\prime}\right)=\omega$.

8

Nonsqueezing Theorem and Symplectic Capacities

My Huynh

April 22, 2014

Theorem 1.1 (Nonsqueezing theorem). If there is a symplectic embedding

$$
B^{2 n}(r) \hookrightarrow Z^{2 n}(R)
$$

then

$$
r \leq R
$$

where $Z^{2 n}=B^{2} \times \mathbb{R}^{2 n-2}$.
Proof. (sketch) We are interested in proving this for dimension 4, which can be generalized in higher dimension. Suppose that there is a symplectic embedding

$$
\phi: B^{4}(1) \rightarrow Z^{4}(r)=D^{2}(r) \times \mathbb{R}^{2}
$$

Then we need to show that $r \geq 1$. Equivalently, by slightly increasing r, we may suppose that the image of the ball lies inside the cylinder, and then we need to show that $r>1$. We need the following ingredients:

Slicing cylinders: Let $\left(Z(r), \omega_{0}\right)$ be the cylinder in $\left(\mathbb{R}^{4}, \omega_{0}\right)$, and let J be any ω_{0}-tame almost complex structure (tame means $\left.\omega_{0}(u, J u) \neq 0, \forall u \neq 0\right)$ on $Z(r)$ that equals the usual structure outside a compact
subset of the interior of $Z(r)$. Then there is a J-holomorphic disc $f:\left(D^{2}, \partial D^{2}\right) \rightarrow(Z(r), \partial Z)$ of symplectic area πr^{2} through every point of $Z(r)$.

Minimal surfaces We say $f: \sum \rightarrow(M, J)$ is J-holomorphic if it satisfies $\frac{\partial f}{\partial x}+J \frac{\partial f}{\partial y}=0$. We think of J-holomorphic curves as minimal surfaces because the area of $f\left(\sum\right)$ with respect to the associated metric g_{J} equals its symplectic area. Since the symplectic area of a surface is invariant under deformations of the surface that fix its boundary, the metric area can only increase under such deformations, so J-holomorphic curves is so-called g_{J}-minimal surfaces.

Let g_{0} be the usual Euclidean metric on \mathbb{R}^{4}. Suppose that S is a g_{0} minimal surface in the ball B of radius 1 that goes through the center of the ball and has the property that its boundary lies on the surfaces of the ball. Then the g_{0}-area of S is $\geq \pi$. Note that the g_{0}-minimal surface of least area that goes through the center of a unit ball is a flat disc of area π.

We shall prove $r>1$ by using J-holomorphic slices as described above, but where J is chosen very carefully. In order to make the slicing arguments work, we need our J to equal the standard Euclidean structure J_{0} near the boundary of $Z(r)$ and also outside a compact subset of $Z(r)$. But because the image $\phi(B)$ of the ball is strictly inside the cylinder, we can also make J equal to any specified ω_{0}-tame almost complex structure on $\phi(B)$. In particular, we may assume that J equals the pushforward of the standard structure $\phi_{*}\left(J_{0}\right)$ on $\phi(B)$, i.e., inside the embedded ball J is "standard".

Then, the statement above about slicing cylinders says that there is a J-holomorphic disc

$$
f: D^{2} \rightarrow Z(r), f(0)=\phi(0)
$$

that goes through the image $\phi(0)$ of the center of the ball and also has boundary on the boundary of the cynlinder. Further, the symplectic area of the slice $C=f\left(D^{2}\right)$ is πr^{2}.

Now consider the intersection $C_{B}:=C \cap \phi(B)$ of the slice with the embedded ball $\phi(B)$. By construction, this goes through the image $\phi(0)$ of the center 0 of the ball B. We now look at this situation from the vantage point of the original ball B. Consider the inverse image $S:=\phi^{-1}\left(C_{B}\right)$. The rest of our argument involves understanding the properties of this curve S in B.
S is holomorphic with respect to the usual complex structure J_{0} on $\mathbb{R}^{4}=\mathbb{C}^{2}$. This follows from our choice of J : by construction, J equals the pushforward of J_{0} on the image of $\phi(B)$ of the ball, and so,
because C_{B} lies in $\phi(B)$ and is J-holomorphic, it pulls back to a curve S that is holomorphic with respect to the pullback structure J_{0}.

This means that S is a minimal surface with respect to the standard metric g_{0} on \mathbb{R}^{4} associated to ω_{0} and J_{0}. So the area of S with respect to g_{0} is at least π. Since S is holomorphic, this metric area is the same as its symplectic area $\omega_{0}(S)$. Since ϕ preserves ω_{0}, this equals the ω_{0}-area of the image curve $\phi(S)=C_{B}$.

By construction, C_{B} is just part of the J-holomorphic slice C through $\phi(0)$. It follows that C_{B} has strictly smaller ω_{0}-area than C. But our basic theorem about slices say that $\omega_{0}(C)=\pi r^{2}$. Putting this all together, we have the following:

$$
\pi \leq g_{0} \text {-area } S=\omega_{0} \text {-area } S=\omega_{0} \text {-area } \phi(S)<\omega_{0} \text {-area } C=\pi r^{2}
$$

Thus, $\pi<\pi r^{2}$ so $r>1$.

Remark 1.2. There is no analogue of this result when the splitting $\mathbb{R}^{2 n}=\mathbb{R}^{2} \times \mathbb{R}^{2 n-2}$ is not symplectic. For example consider the Lagrangian splitting $\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$. Then for every $\delta<0$, the map $(x, y) \rightarrow$ $\left(\delta x, \delta^{-1} y\right)$ is a symplectic embedding of $B^{2 n}(1)$ into $B^{n}(\delta) \times \mathbb{R}^{n}$.

Remark 1.3. Recently, this theorem has been extended Lalonde and McDuff to arbitrary symplectic manifold (M, ω) of dimension $2 n$. If there is a symplectic embedding

$$
B^{2 n+2}(r) \hookrightarrow B^{2}(R) \times M
$$

then $r \leq R$.
Example 1.4. Polterovich observed that, given any r, once can construct a symplectic embedding

$$
B^{2 n+2}(r) \hookrightarrow \mathbb{T}^{2}(1) \times \mathbb{R}^{2 n}
$$

in the following way. Find a linear Lagrangian subspace L of $\mathbb{R}^{2} \times \mathbb{R}^{2 n}$ whose ϵ-neighbourhood L_{ϵ} projects injectively onto $\mathbb{R}^{2} / \mathbb{Z}^{2} \times \mathbb{R}^{2 n}=\mathbb{T}^{2}(1) \times \mathbb{R}^{2 n}$. Then consider a composite map

$$
B^{2 n+2}(r) \hookrightarrow L_{\epsilon} \hookrightarrow \mathbb{T}^{2}(1) \times \mathbb{R}^{2 n}
$$

Symplectic Camel Principle: [Due to Gromov] It is impossible to move a ball of radius ≥ 1 symplectically from one side of the wall W to the other. The wall with a hole removed is given by

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}=0, x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \geq 1\right\}
$$

But for volume preserving, you can by imaging it in 3-dimensional case and a sufficiently flexible ballon through any small hole while preserving its volume.

2 Symplectic Capacities

Gromov's nonsqueezing theorem gave rise to the following definition which is due to Ekeland and Hofer. A symplectic capacity is a functor c which assigns to every symplectic manifold (M, ω) a nonnegative (possible infinite) number $c(M, \omega)$ and satisfies the following condition.

- (monotonicity) If there is a symplectic embedding $\left(M_{1}, \omega_{1}\right) \hookrightarrow\left(M_{2}, \omega_{2}\right)$ and $\operatorname{dim} M_{1}=\operatorname{dim} M_{2}$ then $c\left(M_{1}, \omega_{1}\right) \leq c\left(M_{2}, \omega_{2}\right)$.
- (conformality) $c(M, \lambda \omega)=\lambda c(M, \omega)$.
- nontriviality $c\left(B^{2 n}(1), \omega_{0}\right)>0$ and $c\left(Z^{2 n}(1), \omega_{0}\right)<\infty$.

From this definition, it isn't clear that capacities exist. However, the existence of a symplectic capacity with

$$
c\left(B^{2 n}(1), \omega_{0}\right)=c\left(Z^{2 n}, \omega_{0}\right)=\pi
$$

is equivalent to Gromov's nonsqueezing theorem. How so? If there is such a capacity then, by the monotonicity, the ball $B^{2 n}(1)$ cannot be symplectically embedded in $Z^{2 n}(R)$ unless $R \geq 1$. Conversely, define the Gromov width of a symplectic manifold (M, ω) by

$$
w_{G}(M, \omega)=w_{G}(M)=\sup \left\{\pi r^{2} \mid B^{2 n}(r) \text { embeds symplectically in } M\right\}
$$

The associated invariant $\sup \left\{\pi r^{2} \mid B^{2 n}(r)\right.$ embeds symplectically in $\left.M\right\}$ is often called the symplectic radius. The Gromov width clearly satisfies the monotonicity and conformality axioms and satisfies the nontriviality axion by the Nonsqueezing theorem.

Example 2.1. $w_{G}\left(B^{2 n}(1)\right)=\pi$.
Example 2.2. $w_{G}\left(S^{2}\left(\pi r^{2}\right) \times \mathbb{T}^{2 n}\left(\pi R^{2}\right)\right)=\pi r^{2}$.
There are other important capacities such as the Hofer-Zehnder capacity $c_{H Z}$, the Ekeland-Hofer capacity $c_{E H}$ and the embedded contact homology capacity $c_{E C H}$. But I think we run out of time....

References

[DM06] Dusa McDuff, Sept 2006, Univ. Minnesota: IT Distinguished Woman Speaker, Department colloquium: What is Symplectic Topology? and talk at the Yamabe conference Symplectomorphism groups an introduction.
[MS95] Dusa McDuff and Dietmar Salamon, Introduction to Symplectic Topology, Oxford Univ. Press, (1995), 2nd edition (1998).

