Zhexiu Tu
Legendrian knots and differential algebras

Legendrian Knots

A knot is a smooth embedding $L: S^{1} \rightarrow \mathbb{R}^{3}$. Consider the the space $\mathbb{R}^{3}=\{(p, q, u)\}$ equipped with the standard contact form $\alpha=d u-p d q$. A smooth knot L in that space is called Legendrian if the restriction of α to L vanishes.

An oriented Legendrian knot L has three classical invariants

- Its isotopy class in the space of smooth embeddings. Two Legendrian knots are said to be Legendrian isotopic if they can be connected by a path in the space of Legendiran embeddings (there exists some diffeomorphism g of \mathbb{R}^{3} such that $g * \alpha=\phi \alpha$, where $\phi>0$.) Every smooth knot is isotopic to a Legendrian one. Two different Legendrian knots that are smooth isotopic may be not Legendrian isotopic. (It's still an open problem to classify the Legendrian knots up to Legendrian isotopy)
- The Bennequin number $\beta(L)$ of L is the linking number between L and $s(L)$ with respect to the orientation defined by $\alpha \wedge d \alpha=-d p \wedge d q \wedge d u$, where s is a small shift along the u-direction.
- The Maslov number $m(L)$ is twice the rotation number of the projection of L to the $p-q$ plane. Think about the reason why m and β are invariants under Legendrian isotopy. When the orientation on L changes, the sign of $m(L)$ changes while $\beta(L)$ preserves.

We define two projections. $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(p, q, u) \mapsto(p, q)$ and $\sigma: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(p, q, u) \mapsto(q, u)$. We say L is generic if all self-intersections of $\pi(L)$ are transverse double points. We draw the π-diagram, the projection $\pi(L)$, in a way that at every double point the branch with larger u stay the upper one. Then

$$
\beta(L)=\#(\pi)-\#(\pi)
$$

(Legendrian isotopic of unknots in the contact structure)
Are there Legendrian knots with the same m and β invariants but not Legendrian isotopic to each other?

Theorem 1. Legendrian knots L_{1}, L_{2} whose π-diagram are given as follows have the same classical invariants, but are not Legendrian isotopic.

Differential algebra

We construct a differential graded algebra (A, d) over \mathbb{Z}_{2} where $d: A \rightarrow A$ satisfies $d(a b)=d(a) b+a d(b)$ for $a, b \in A$ and $d^{2}=0$. Denote by $T\left(a_{1}, \ldots, a_{n}\right)$ the free associative unitary algebra over \mathbb{Z}_{2} with generators $a_{1}, \ldots, a_{n}, n \geq 0$. Then $T\left(a_{1}, \ldots, a_{n}\right)=\oplus_{l=0}^{\infty} A_{l}$ where A_{l} is spanned by l generators and A_{0} is just \mathbb{Z}_{2}.

Let $Y \subset \mathbb{R}^{2}$ be the π-diagram of a Legendrian knot L, we define the following items respectively

- $W_{k}(Y)$ the collection of smooth orientation-preserving immersions $f: \Pi_{k} \rightarrow \mathbb{R}^{2}$ such that $f\left(\partial \Pi_{k} \subset Y\right)$ where Π_{k} is a k-gon with vertices numbered counterclockwise.
- $\tilde{W}_{k}(Y)=W_{k}(Y) /\left\{g \in \operatorname{Diff}_{+} \mid g\left(x_{i}^{k}\right)=x_{i}^{k}\right\}$
- An immersion $f \in \tilde{W}_{k}(Y)$ is admissible if the first vertex x_{0}^{k} is positive and all the others are negative. The set of such f 's is denoted by $W_{k}^{+}(Y)$.
- $d\left(a_{j}\right)=\sum_{k \geq 1} \sum_{f \in W_{k}^{+}\left(Y, a_{j}, \ldots, a_{j_{k-1}}\right)} a_{j_{1}} \cdots a_{j_{k-1}}$ and we extend d to a linear map $A_{Y} \rightarrow A_{Y}$

Theorem 2. $d^{2}=0$.
Theorem 3. Let $\left(A_{L_{1}}, d\right),\left(A_{L_{2}}, d\right)$ be the differential graded algebras associated with Legendrian isotopic generic Legendrian knots L_{1}, L_{2}. Then the homology rings of $\left(A_{L_{1}}, d\right)$ and $\left(A_{L_{2}}, d\right)$ are isomorphic.

Example 4. Let's look at three examples.

Figure 4:

Figure $5:$

We have $m\left(L_{1}\right)=m\left(L_{2}\right)=0, \beta\left(L_{1}\right)=\beta\left(L_{2}\right)=1$.

- $d\left(a_{1}\right)=1+1=0$
- $d\left(a_{1}\right)=a_{4}+a_{3} a_{4}+a_{4} a_{5}+a_{4} a_{5} a_{3} a_{4}$

$$
d\left(a_{2}\right)=1+a_{3}+a_{5}+a_{3} a_{4} a_{5}
$$

$$
d\left(a_{3}\right)=d\left(a_{4}\right)=d\left(a_{5}\right)=0
$$

- $d\left(a_{1}\right)=1+a_{4} a_{6}$

$$
d\left(a_{2}\right)=1+a_{5} a_{4}
$$

$$
d\left(a_{3}\right)=1+a_{6} a_{5}
$$

$$
d\left(a_{4}\right)=d\left(a_{5}\right)=d\left(a_{6}\right)=0
$$

We have $m\left(L_{1}\right)=m\left(L_{2}\right)=0, \beta\left(L_{1}\right)=\beta\left(L_{2}\right)=1$. For L_{1}, we have $d\left(a_{1}\right)=1+a_{7}+a_{7} a_{6} a_{5}$, $d\left(a_{2}\right)=1+a_{9}+a_{5} a_{6} a_{9}, d\left(a_{3}\right)=1+a_{8} a_{7}, d\left(a_{4}\right)=1+a_{8} a_{9}, d\left(a_{5}\right)=d\left(a_{6}\right)=d\left(a_{7}\right)=$ $d\left(a_{8}\right)=d\left(a_{9}\right)=0$; for L_{2}, we have $d\left(a_{1}\right)=1+a_{7}+a_{7} a_{6} a_{5}+a_{5}, d\left(a_{2}\right)=1+a_{9}+a_{5} a_{6} a_{9}$, $d\left(a_{3}\right)=1+a_{8} a_{7}, d\left(a_{4}\right)=1+a_{8} a_{9}, d\left(a_{5}\right)=d\left(a_{6}\right)=d\left(a_{7}\right)=d\left(a_{8}\right)=d\left(a_{9}\right)=0$.

Let $A=T\left(a_{1}, \ldots, a_{n}\right), \bar{A}=\oplus_{l=1}^{\infty} A_{l}$. The differential algebra (A, d) is called augmented if $d((\bar{A})) \subset \bar{A}$. Let $d=\sum_{l=0}^{\infty} d_{l}$ where $d_{l}\left(a_{i}\right) \subset A_{l}$ for every $i \in\{1,2, \ldots, n\}$. Suppose (A, d) is augmented, then $d_{0}=0$ and $d\left(\bar{A}^{m}\right) \subset \bar{A}^{m}=\oplus_{i=m}^{\infty} A_{i}$ for every m. So d induces a linear operator $d_{(1)}$ on the quotient vector space $\bar{A} / \bar{A}^{2} . d_{(1)}^{2}=0 . d_{(1)}$ coincide with the restriction of d_{1} to A_{1}.

Consider the cohomology of $d_{(1)}$. Let $i(A, d)=\operatorname{dim}\left(\operatorname{ker} d_{(1)}\right)-\operatorname{dim}\left(\operatorname{im} d_{(1)}\right)=n-2 \operatorname{dim}\left(\operatorname{im} d_{(1)}\right)$. Define the invariant $I(L)=\{i\}$ for $i\left(T\left(a_{1}, \ldots, a_{n}\right), d^{g}\right)$ where $d^{g}=g d g^{-1}$ over all $g \in \operatorname{Aut}(A)$ such that $\left(A, d^{g}\right)$ is augmented.

Theorem 5. If L is Legendrian isotopic to L^{\prime}, then $I(L)=I\left(L^{\prime}\right)$.

Compute the differential algebra (A, d) for L_{1}, L_{2}. Let $g \in \operatorname{AUT}_{0}(A)$ be given by $g\left(a_{i}\right)=$ $a_{i}+c_{i}, i \in\{1, \ldots, 9\}$. $d^{g}\left(a_{i}\right)=g\left(d\left(a_{i}\right)\right)$. After computation, we have $I\left(L_{1}\right)=\{3\}, I\left(L_{2}\right)=$ $\{1\}$.

Decompositions of Fronts For a Legendrian knot $L \subset \mathbb{R}^{3}$, its σ-projection, or front projection, $\sigma(L) \subset \mathbb{R}^{2}$ is a singular curve with nowhere vertical tangent vectors. (q-axis horizontal u-axis vertical) Redefine the Maslov and Bennequin number under this projection. L is σ-generic if all self-intersections of $\sigma(L)$ are transverse double points with different q coordinates. Since the overpassing branch (the one with the greater value of p) is always the one with the greater slope, so there is no need to show the type of a crossing of $\sigma(L)$. The Maslov and Bennequin numbers can be computed as follows,

$$
\begin{gathered}
m(L)=\#(\searrow)-\#(\searrow) \\
\beta(L)=\#(\searrow)+\#(\searrow)-\#(\searrow)-\#(\searrow)-\#(\searrow)
\end{gathered}
$$

The four conditions of admissible decompositions
Suppose $\Sigma=\sigma(L)$ is a union of closed curves X_{1}, \ldots, X_{n} that have finitely many intersections, then $\left\{X_{1}, \ldots, X_{n}\right\}$ is called a decomposition of Σ. A decomposition $\left\{X_{1}, \ldots, X_{n}\right\}$ is called admissible if it satisfies the four conditions as follows,

- Each curve X_{i} bounds a topological disk $X_{i}=\partial B_{i}$.
- For each $i \in\{1, \ldots, n\}, q \in \mathbb{R}$, the set $B_{i}(q)=\left\{u \in \mathbb{R} \mid(q, u) \in B_{i}\right\}$ is either a segment or a single point u such that (q, u) is a cusp of Σ, or is empty. (switching/nonswitching crossing point)
- If $\left(q_{0}, u\right) \in X_{i} \cap X_{j}(i \neq j)$ is switching then for each $q \neq q_{0}$ sufficiently close to q_{0} the set $B_{i}(q) \cap B_{j}(q)$ either conincide with $B_{i}(q)$ or $B_{j}(q)$, or is empty.
- Every switching crossing is Maslov (if r takes the same value on both its branches)

Example 6. Let's look at the four examples

Denote by $\operatorname{Adm}(\Sigma)$ the set of admissible decompositions of Σ. Given $D \in \operatorname{Adm}(\Sigma)$, denote by $S w(D)$ the set of its switching points. Define $\theta(D)=\#(D)-\#(S w(D))$.

Theorem 7. If σ-generic Legendrian knots $L_{1}, L_{2} \subset \mathbb{R}^{3}$ are Legendrian isotopic then there exists a one-to-one mapping $g: \operatorname{Adm}\left(\sigma\left(L_{1}\right)\right) \rightarrow \operatorname{Adm}\left(\sigma\left(L_{2}\right)\right)$ such that $\theta(g(D))=\theta(D)$ for
all $D \in \operatorname{Adm}(\sigma(L))$. In particular, the number $\#(\operatorname{Adm}(\sigma(L)))$ is an invariant of Legendrian isotopy.

The fronts Σ_{1}, Σ_{2} correspond to the Legendrian knots L_{1}, L_{2}. We show that $\#\left(\operatorname{Adm}\left(\Sigma_{1}\right)\right) \neq$ $\#\left(\operatorname{Adm}\left(\Sigma_{2}\right)\right)$.

References

[1] Yuri Chekanov, New Invariants of Legendrian Knots.
[2] Yuri Chekanov, Differential algebras of Ledendrian Links.
[3] John Etnyre, Legendrian and Transversal Knots.

