
Topology, Binary Numbers & Puzzle Games

Topology

Topology is a branch of mathematics that is concerned with invariant (unchanging)

properties of different objects. It is known as rubber geometry because topologists

like to think about what properties shapes still have after they are stretched out and

moved around. A topologist looks at shapes differently than you and I do in day to

day life. For example, I’m sure we would all say a triangle and circle are two different

shapes. However, a topologists would these shapes are the same.

Why? Imagine a triangle made of silly putty is sitting on top of a piece of paper,

which will represent a plane. We can easily smooth it into a circle and it still divides

the paper into two regions, one inside the shape and the other outside the shape, so it

is in this sense that the shapes are the same. This is also an example of an invariant

property: even if the triangle is stretched and pushed around so it no longer has

sharp angles, or has four angles instead of only three, it still has one hole and thus

divides our paper into two regions. However, we are not allowed to break the silly

putty or pinch it together. So, no matter how we stretch or bend our putty triangle

the resulting shape will always have the property that it has one hole, and separates

the paper into two regions. Furthermore, this also tells us that a triangle, circle and

rectangle are all the same, but are topologically distinct from a figure eight because

it has two holes and divides the paper into three regions, no matter how we bend and

stretch it.

Inside or Outside?

One of the first theorems a topologist will learn is the Jordan Curve Theorem:

Any closed and simple (doesn’t cross itself) curve in the plane, such as

a triangle or circle, divides the plane into two regions, one inside the

curve and one outside the curve.

Seems obvious, right? The truth is though, it is not obvious how to prove it using

rigorous mathematics. (Which is why it was worthy of the label ”theorem” when

Jordan figured out how to do so!)

Topology and Sprouts.

How many distinct first moves are there in the two dot game of sprouts?

Topologically, there are only two distinct opening moves. If the two dots are connected

by a line, the plane still only has one region. If instead Player 1 decides to draw a
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loop connecting a dot to itself this creates and closed curve and thus splits the plane

into an inside and outside region. It does not matter which of the two dots the loop

emanates from, nor does it matter if the second dot is inside or outside the loop.

The equivalent positions in the three dot game shown on the puzzle sheet are of course

topologically equivalent as well, and each is equivalent to the figure eight.

Isolating Points.

If a line is drawn connecting two dots and this line creates a closed curve either by

itself (i.e. it’s a loop) or by connecting to an existing line creating a closed curve, the

Jordan curve theorem guarantees one of the existing regions of the plane is separated

into two regions. You no doubt noticed this when you were playing. Since lines

cannot be drawn through existing lines, the idea of inside and outside is significant

as it allows one to isolate dots, thus restricting the possibilities one’s opponent has

on her next turn.

The Utilities Puzzle. The Jordan curve theorem is related to another well known

puzzle: Three houses each need to be hooked up to the water, gas and electricity

plants. The catch is none of the pipelines can intersect. Can you figure out a way to

connect each home to each of the three utilities?

The Jordan curve theorem can be used to show that there is no way to solve this

problem! Try to think about how considering the idea of inside and outside can be

used to prove there is no way to draw the nine necessary lines without intersection.

You can check the Archimedes Lab webpage to see if you were on the right track:

http://www.archimedes-lab.org/How to Solve/Water gas.html.
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Binary Numbers

In the binary number system, every number can be represented using only the two

digits 0 and 1. (Remember the prefix bi- means two.) One can think of this in terms

of false, or off, and true, or on. This is actually how your computer thinks; every

circuit in the computer gets assigned either the digit 0 if it is off, or 1 if it is on. So, if

you have studied computer science you are probably already familiar with the binary

number system, but it will be discussed here for those of us who are not. Before we

describe how to represent numbers in the binary system, lets review our usual number

system.

Base-10 Number System. In grade school we all learn how to count and represent

numbers in a base-10 system. It is called base-10 because each number can be rep-

resented using 10 digits: 0, 1, 2, . . . , 9. If we dissect exactly what is going on with the

base-10 system, it will be much easier to understand how to represent numbers in the

binary (or base-2) system. Let’s examine the number 1234. We say that 4 is in the

ones position, 3 is in the tens position, 2 is in the hundreds position, and 1 is in the

thousands position. Where does this terminology come from? Notice that a natural

way to think of this number is as follows.

1234 = 1000 + 200 + 30 + 4

We have broken 1234 into a sum of numbers, which are each a multiple of a power of

10. That is

1234 = 1 × 1000 + 2 × 100 + 3 × 10 + 4 × 1

= 1 × 104 + 2 × 103 + 3 × 102 + 4 × 100,

where the exponential function 10k means 10 is multiplies k times (10×10×· · ·×10),

and by convention 100 = 1. So, for example, we say that 2 is the hundreds digit

because it is the digit which is multiplied by 100 = 102.

Binary Numbers. Since the binary system is base-2, numbers are represented using

2 digits (0 and 1) and powers of 2. Lets start by figuring out how to represent powers

of 2 in binary. (It may be helpful to refer back to the base-10 example as you work

through the examples.)

1 = 20 = 1 × 20, so in binary 1 = 1.

2 = 21 = 1 × 21 + 0 × 20, so in binary 2 = 1 0.

4 = 22 = 1 × 22 + 0 × 21 + 0 × 20, so 4 = 1 0 0.
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Now, let’s write a few more numbers in binary. Remember, each power of 2 is

multiplied by either a 1 or 0, which indicates whether or not that particular power

shows up when the number is written as a sum of powers of 2. (i.e. it is true or false

that this power of 2 appears in the sum.)

Since we must write numbers as a sum of powers of 2, this table will come in handy:

k 0 1 2 3 4 5 6 7 8 9 10

2k 1 2 4 8 16 32 64 128 256 512 1024

• 5 = 4 + 1 = 1 × 22 + 0 × 21 + 1 × 20 = 1 0 1.

• 10 = 8 + 2 = 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 = 1 0 1 0

• To write 77 in binary, notice that 64 is the greatest power of 2 which is less

than or equal to 77. We can start the process of writing 77 as a sum of

powers of 2 by writing 77 = 64 + 13. Next, we look for a greatest power of 2

which is less than or equal to 13, which is 8, and then continue the process:

77 = 64 + 8 + 5 = 64 + 8 + 4 + 1. Thus, the binary representation of 77 is

1 0 0 1 1 0 1.

• 122 = 64 + 32 + 16 + 8 + 2 = 1 1 1 1 0 1 0.

You try. Write each of the following as a binary number.

a) 6 b) 23 c) 964 d) 1234

Analyzing Nim. When playing Nim, you may have noticed that if the configuration

after your turn was such that there were pennies in only two of the rows and that

these rows have an equal number of pennies, you were in a winning position. Why is

this? If there are an equal number of pennies, all you have to do is match what your

opponent does on on the next turn so that there are still an equal number of pennies

in each row on your opponent’s next turn. This ensures that when your opponent

takes the last penny in a row there will be one last penny for you to take in the other

row. It is therefore a good strategy (no matter how many pennies the game starts

with) to try to reach this configuration.

Connection to Binary Numbers. If there are an equal number of pennies

in two rows and the binary representation of the number of pennies in each row are

summed, the result will be a number with even digits in every column. (Note the sum

will not be the actual binary representation of the sum.) This is the case because

there can only be a 0 or 1 in each column; if the column has two zeros the result will

be a zero, and if it has ones, the result will be 2. For example, if there are six pennies
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in two rows, we have

6 : 1 1 0

6 : 1 1 0

2 2 0

How is this useful in creating a strategy? For now let’s still consider a situation

with pennies in only two rows. Suppose there are 7 and 5 pennies. Then the binary

sum looks like

7 : 1 1 1

5 : 1 0 1

2 1 2

which has an odd digit. Suppose we choose our move so that the binary sum of the

remaining number of pennies in the two rows will have all even digits. If we take away

two pennies from the top row at our turn, the 1 in the middle column becomes a 0

and the sum changes to 2 0 2, which has all even digits. This is good for us because

it also means there are 5 pennies in each row on our opponents turn so we are sure

to win!

This generalizes to situations when there are pennies in more than two rows: if the

binary sum on our turn contains odd numbers and we can make a move such that

the remaining number of pennies has only even digits, we are in a winning position.

For example, the binary sum at the start of the game with a 2-3-4 configuration is

2 : 0 1 0

3 : 0 1 1

4 : 1 0 0

1 2 1.

This has two odd digits. Notice we must take pennies from the bottom row in order

to get an even number, namely 0, in the left most column of the sum. If the remaining

number of pennies in the bottom row is odd, there will be a 1 in the right most column

of the binary representation and the sum of that column will be even. However, if we

take only 1 away so that there are 3 remaining, there will be an additional 1 in the

middle column of the binary representation so the sum of that column would become

odd. The goal is to to have all even digits, so the best move would be to remove 3
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pennies from the bottom row:

2 : 0 1 0

3 : 0 1 1

1 :0 0 1

0 2 2.

Now, no matter what move the opponent makes the binary representations will differ

in at least one column, which means there will be at least one odd number. On our

turn, we can remove pennies so that the sum has all even digits. If we continue in

this manner we are guaranteed to win!

Recall the winning configurations you thought of while playing the game. Write

them out in binary, as done above, and verify that the winning configurations have all

even digits. Try playing with more pennies and see if you can find a winning strategy

using binary numbers.

Links to More Information

Topology:

• Good basic introduction: (you can click on this at the Puzzle Night website)

http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Estes/unit/dayten/topology1.html

• Mbius strip (this is fun):

http://www.themathwebsite.com/Classics/Classic Mbius Strip.php

Jordan Curve Theorem and Utilities:

• http://www.archimedes-lab.org/How to Solve/Water gas.html

• http://www.cut-the-knot.org/do you know/3Utilities.shtml

Binary Number System: http://www.unm.edu/ tbeach/terms/binary.html

Analysis of Nim:

• http://www.cs4fn.org/binary/nim/nimsecret.php

• http://library.thinkquest.org/06aug/01132/Gametreepage.htm


