Regression

Cautions

1970 Draft Lottery

Gas Chromatography

Cleaning Crews

Example

Proof of Normal Approximation

Oct. 19, 2009
Correlation Properties

\[r = \frac{1}{n - 1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]
Correlation Properties

\[r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]

\(-1 \leq r \leq 1\) (\(\pm 1\) only for perfect linear association)
Correlation Properties

\[r = \frac{1}{n - 1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]

\(r \) is unchanged if \(x \) and \(y \) are exchanged.
Correlation Properties

\[r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]

invariant under rescaling
Correlation Properties

\[r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]

Curved association and \(r=0 \) are consistent!
Correlation Properties

r is strongly affected by outliers.
Correlation Properties

\[r \text{ is strongly affected by outliers. Consider 9 points } (x=0, 1, \ldots, 8 \text{ on the line } y = 2x + 3 \text{ plus one outlier when } x = 9. \]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>21 + \epsilon_9</td>
</tr>
</tbody>
</table>
r is strongly affected by outliers.
Correlation Properties

r is strongly affected by outliers.

Correlation vs. size of ϵ_9.

<table>
<thead>
<tr>
<th>ϵ_9</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>-10</td>
<td>0.853</td>
</tr>
<tr>
<td>10</td>
<td>0.944</td>
</tr>
<tr>
<td>-5</td>
<td>0.968</td>
</tr>
<tr>
<td>-10</td>
<td>0.853</td>
</tr>
<tr>
<td>-15</td>
<td>0.663</td>
</tr>
<tr>
<td>-20</td>
<td>0.455</td>
</tr>
<tr>
<td>-25</td>
<td>0.275</td>
</tr>
<tr>
<td>5</td>
<td>0.981</td>
</tr>
<tr>
<td>15</td>
<td>0.904</td>
</tr>
<tr>
<td>20</td>
<td>0.866</td>
</tr>
<tr>
<td>25</td>
<td>0.834</td>
</tr>
</tbody>
</table>
Correlation Properties

\[r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]

samples from independent RV’s ⇒ \(r \sim 0 \)
Correlation Properties

\[r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]

\(X, Y \) indep std normal RV’s; set \(Y^* = \rho X + \sqrt{1 - \rho^2} Y \) Then \((X, Y^*) \) will tend to generate data with \(r \sim \rho \). (e.g. \(\rho = .99 \)

\[\Rightarrow \frac{\sqrt{1 - \rho^2}}{\rho} = .14 ! \)
What does Best Fitting Mean?

Given any point \((x_i, y_i)\)
What does Best Fitting Mean?

Given any point \((x_i, y_i)\)
and any line \(y = c_0 + c_1 x\)
Given any point \((x_i, y_i)\)
and any line \(y = c_0 + c_1x\)
we can use the line to get a predicted value

\[\hat{y}_i = c_0 + c_1x_i \]
What does Best Fitting Mean?

Given any point \((x_i, y_i)\) and any line \(y = c_0 + c_1x\) we can use the line to get a predicted value

\[
\hat{y}_i = c_0 + c_1x_i
\]

and define the residual \(d_i\) by

\[
d_i = y_i - \hat{y}_i.
\]
What does Best Fitting Mean?

Best fitting means the line minimizing the sum $\sum d_i^2$ of the squares of the vertical distances.
What does Best Fitting Mean?

Best fitting means the line minimizing the sum Σd_i^2 of the squares of the vertical distances.

Another try: Minimize Σd_i.

But cancellation would be a problem.
What does Best Fitting Mean?

Best fitting means the line minimizing the sum Σd_i^2 of the squares of the vertical distances.

A Real Possibility: Minimize $\Sigma |d_i|$. Not as nice a theory. (Abs value not differentiable)

Answer line can always be chosen to join two data points. Sometimes used.
What does Best Fitting Mean?

Best fitting means the line minimizing the sum $\sum d_i^2$ of the squares of the vertical distances.

Answer: We’ll show the best fitting line $\hat{y} = b_1x + b_0$ is given by

$$b_1 = r \left(\frac{s_y}{s_x} \right)$$
What does Best Fitting Mean?

Best fitting means the line minimizing the sum Σd_i^2 of the squares of the vertical distances.

Answer: We’ll show the best fitting line $\hat{y} = b_1 x + b_0$ is given by

$$b_1 = r \left(\frac{s_y}{s_x} \right)$$

i.e.: *Slope is r in standard deviation units.*

And

$$b_0 = \bar{y} - b_1 \bar{x}$$

i.e.: *The point (\bar{x}, \bar{y}) lies on the line.*
What does Best Fitting Mean?

Strictly speaking, the word residual refers to this vertical distance d_i JUST in the case that the line is the “answer line”

$$\hat{y} = b_0 + b_1 x.$$
\[R^2 \]

“The proportion of the variation in y explained by the regression of y on x is \(r^2 \).”
“The proportion of the variation in y explained by the regression of y on x is r^2.”

This actually means that for the 1-variable data sets $\{y_i\}$ and $\{\hat{y}_i\}$ (the predicted values) we have:

$$r^2 = \frac{\text{Var}(\hat{y}_i)}{\text{Var}(y_i)}$$
"The proportion of the variation in \(y \) explained by the regression of \(y \) on \(x \) is \(r^2 \)."

This actually means that for the 1-variable data sets \(\{y_i\} \) and \(\{\hat{y}_i\} \) (the predicted values) we have:

\[
r^2 = \frac{\text{Var}(\hat{y}_i)}{\text{Var}(y_i)}
\]

More meaningful is the companion statement about residuals:

\[
\text{Var}(d_i) = (1 - r^2) \cdot \text{Var}(y_i)
\]
"The proportion of the variation in y explained by the regression of y on x is r^2."

This actually means that for the 1-variable data sets $\{y_i\}$ and $\{\hat{y}_i\}$ (the predicted values) we have:

$$r^2 = \frac{Var(\hat{y}_i)}{Var(y_i)}$$

More meaningful is the companion statement about residuals:

$$Var(d_i) = (1 - r^2) \cdot Var(y_i)$$

Note

$$y_i = \hat{y}_i + (y_i - \hat{y}_i) = \hat{y}_i + d_i$$
Think of an arbitrary line as being given by:

\[(y - \bar{y}) = c(x - \bar{x}) + d\]
Proof of Formula for Line of Regression

\[(y - \bar{y}) = c(x - \bar{x}) + d\]

Look at the sum of the squares of the residuals of the \(n\) points:

\[
\Sigma(y_i - c(x_i - \bar{x}) - (d + \bar{y}))^2 =
\]

\[
= \Sigma((y_i - \bar{y}) - c(x_i - \bar{x}) - d)^2
\]

\[
= \Sigma(y_i - \bar{y})^2 - 2c(x_i - \bar{x})(y_i - \bar{y}) + c^2(x_i - \bar{x})^2
\]

\[
+ \Sigma d^2 + 2cd(x_i - \bar{x}) - 2d(y_i - \bar{y})
\]
Proof of Formula for Line of Regression

\[(y - \bar{y}) = c(x - \bar{x}) + d\]

\[\sum(y_i - \bar{y})^2 - 2c(x_i - \bar{x})(y_i - \bar{y}) + c^2(x_i - \bar{x})^2 + \sum d^2 + 2cd(x_i - \bar{x}) - 2d(y_i - \bar{y})\]

Use the definitions of \(s_x^2\), \(s_y^2\), and \(r\). Also use the fact that \(\sum(x_i - \bar{x}) = 0\) and \(\sum(y_i - \bar{y}) = 0\). Then the above sum of squares becomes

\[(n - 1)(s_y^2 - 2crs_x s_y + c^2 s_x^2) + nd^2 = \]

\[= (n - 1)((cs_x - rs_y)^2 + (1 - r^2)s_y^2) + nd^2\]
Proof of Formula for Line of Regression

\[(y - \bar{y}) = c(x - \bar{x}) + d\]

\[(n - 1)((cs_x - rs_y)^2 + (1 - r^2)s_y^2) + nd^2\]

Because squares are always non-negative, this sum is minimized when \(d = 0\) and \(cs_x - rs_y = 0\). In other words, the line minimizing the sum of the squares of the residuals is

\[(y - \bar{y}) = r \frac{s_y}{s_x} (x - \bar{x})\]

in agreement with our usual formulas.
Regression Conditions

Textbook:

- (Paired) Quantitative Variables \((x_i, y_i), \; i = 1 \ldots n\)
- No Outliers
- Straight Enough Condition
Regression Conditions

Textbook:
- (Paired) Quantitative Variables (x_i, y_i), $i = 1 \ldots n$
- No Outliers
- Straight Enough Condition

Regression Plots Should Appear to Have:
- No pattern in the residuals.
- Constant standard deviation in residuals.
- Residuals normally distributed with mean 0.
Regression Conditions

Regression Plots Should Appear to Have:

- No pattern in the residuals.
- Constant standard deviation in residuals.
- Residuals normally distributed with mean 0.

Ideal Linear Relationship:

\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i \]

with the errors \(\epsilon_i \) independent of each other and all following \(N(0, \sigma) \) for some constant standard deviation \(\sigma \).
Regression Conditions

Regression Plots Should Appear to Have:
- No pattern in the residuals.
- Constant standard deviation in residuals.
- Residuals normally distributed with mean 0.

Ideal Linear Relationship:

\[y_i = \beta_0 + \beta_1 x_i + \epsilon_i \]

with the errors \(\epsilon_i \) independent of each other and all following \(N(0, \sigma) \) for some constant standard deviation \(\sigma \).

There’s no requirement that the \(x \) values be random.
Regression Cautions

Extrapolation is Dangerous

![Extrapolation Chart]

MY HOBBY: EXTRAPOLATING

As you can see, by late next month you'll have over four dozen husbands. Better get a bulk rate on wedding cake.
Regression Cautions

Extrapolation is Dangerous

As you can see, by late next month you'll have over four dozen husbands. Better get a bulk rate on wedding cake.

And watch out for lurking variables.
Was it Fair?

The first draft lottery during the Vietnam War: 366 balls labeled by dates. Mixed up and pulled out in a “random” order.
Was it Fair?

Scatterplot
Was it Fair?

Boxplots for each month
Was it Fair?

Scatterplot with Regression Line
Was it Fair?

Correlation Display

Pearson Product-Moment Correlation

<table>
<thead>
<tr>
<th>No Selector</th>
<th>Draft_No.</th>
<th>Day_of_year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.000</td>
<td>-0.226</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

1970 Draft Lottery

Gas Chromatography

Cleaning Crews Example

Proof of Normal Approximation
Was it Fair?

Correlation Display

Pearson Product-Moment Correlation

No Selector

<table>
<thead>
<tr>
<th>Draft_No.</th>
<th>Draft_</th>
<th>Day_of_</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft_No.</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Day_of_year</td>
<td>-0.226</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Around 1 in a thousand chance of a correlation coefficient this far from 0 if the lottery was fair.
Was it Fair?

Around 1 in a thousand chance of a correlation coefficient this far from 0 if the lottery was fair.
The balls were probably not mixed well enough.
Does R^2 near 1 Mean an Accurate Linear Model?

5 measurements each of 4 samples. Amount of the substance in sample known in advance. Response variable is the output reading from the gas chromatograph.
Does R^2 near 1 Mean an Accurate Linear Model?

Scatterplot
Does R^2 near 1 Mean an Accurate Linear Model?

Scatterplot with Regression Line
Does R^2 near 1 Mean an Accurate Linear Model?

Scatterplot with Regression Line

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2.75907e6</td>
<td>1</td>
<td>2.75907e6</td>
<td>3.39e4</td>
</tr>
<tr>
<td>Residual</td>
<td>1465.53</td>
<td>18</td>
<td>81.4184</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>s.e. of Coeff</th>
<th>t-ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-14.4107</td>
<td>2.614</td>
<td>-5.51</td>
<td>≤ 0.0001</td>
</tr>
<tr>
<td>amount</td>
<td>46.6287</td>
<td>0.2533</td>
<td>184</td>
<td>≤ 0.0001</td>
</tr>
</tbody>
</table>
Does R^2 near 1 Mean an Accurate Linear Model?

Residual Plot
Does R^2 near 1 Mean an Accurate Linear Model?

Residual Plot with Horizontal Line

$(\Sigma d_i = 0$ always.)
Despite $r^2 = .999$, a linear model does not fully capture our situation here. Just plugging into the line of regression would not be the right way to make a prediction.
How Many Rooms Can x Crews Clean?

x crews working for a building contractor go out each night and clean y rooms.

Understand the relationship?
How Many Rooms Can \(x \) Crews Clean?

Scatterplot
How Many Rooms Can x Crews Clean?

Summary of No Selector
54 total cases of which 1 is missing

Percentile 25

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>53</td>
</tr>
<tr>
<td>Mean</td>
<td>8.67925</td>
</tr>
<tr>
<td>Median</td>
<td>8</td>
</tr>
<tr>
<td>StdDev</td>
<td>4.80294</td>
</tr>
<tr>
<td>Range</td>
<td>14</td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>8</td>
</tr>
<tr>
<td>Lower ith %tile</td>
<td>4</td>
</tr>
<tr>
<td>Upper ith %tile</td>
<td>12</td>
</tr>
</tbody>
</table>
How Many Rooms Can x Crews Clean?

RoomsCleaned Summary

Summary of
No Selector
54 total cases of which 1 is missing
Percentile 25

Count 53
Mean 33.9057
Median 35
StdDev 19.2026
Range 72
InterQuartile Range 27.5
Lower 1st Quartile 18.75
Upper 1st Quartile 46.25
How Many Rooms Can x Crews Clean?

Scatterplot with Regression Line

[Diagram showing a scatterplot with a regression line, indicating the relationship between the number of crews and the number of rooms cleaned.]
How Many Rooms Can x Crews Clean?

Regression Display

Dependent variable is: RoomsClean
No Selector
54 total cases of which 1 is missing
R squared = 85.7% R squared (adjusted) $= 85.4$
$s = 7.336$ with $53 - 2 = 51$ degrees of freedom

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>16429.7</td>
<td>1</td>
<td>16429.7</td>
<td>305</td>
</tr>
<tr>
<td>Residual</td>
<td>2744.8</td>
<td>51</td>
<td>53.8195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>s.e. of Coeff</th>
<th>t-ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.7847</td>
<td>2.096</td>
<td>0.851</td>
<td>0.3986</td>
</tr>
<tr>
<td>Number Of Cr...</td>
<td>3.70089</td>
<td>0.2118</td>
<td>17.5</td>
<td>≤ 0.0001</td>
</tr>
</tbody>
</table>
How Many Rooms Can x Crews Clean?

Regression Display

Dependent variable is: RoomsClean

No Selector

54 total cases of which 1 is missing

R squared = 85.7% \quad R squared (adjusted) = 85.4%

s = 7.336 \quad with \quad 53 - 2 = 51 \quad degrees \quad of \quad freedom

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>16429.7</td>
<td>1</td>
<td>16429.7</td>
<td>305</td>
</tr>
<tr>
<td>Residual</td>
<td>2244.8</td>
<td>51</td>
<td>53.8195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>s.e. of Coeff</th>
<th>t-ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.7847</td>
<td>0.22926</td>
<td>0.851</td>
<td>0.3986</td>
</tr>
<tr>
<td>Number Of Cr...</td>
<td>3.70089</td>
<td>0.2118</td>
<td>17.5</td>
<td>≤ 0.0001</td>
</tr>
</tbody>
</table>
How Many Rooms Can x Crews Clean?

Regression Display

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>16429.7</td>
<td>1</td>
<td>16429.7</td>
<td>305</td>
</tr>
<tr>
<td>Residual</td>
<td>2244.8</td>
<td>51</td>
<td>53.8195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.7847</td>
<td>0.851</td>
<td>0.3986</td>
</tr>
<tr>
<td>Number Of Cr...</td>
<td>3.70089</td>
<td>17.5</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

$$\text{RoomsCleaned} = 3.70 \cdot \text{NumCrews} + 1.78$$
How Many Rooms Can x Crews Clean?

Residual Plot

Proof of Normal Approximation
How Many Rooms Can x Crews Clean?

There are important deviations from the assumptions of an ideal linear regression model here.
Normal Distribution Formula

\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \]
Normal Distribution Formula

\[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
Normal Distribution Formula

\[f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

These formulas and the following argument are far above the basic level of our course.
Suppose $X \sim Binom(2m, .5)$
Why Normal Out of Binomial?

Suppose $X \sim \text{Binom}(2m, .5)$

$\mu = m$ and $\sigma = \sqrt{.5m}$.
Why Normal Out of Binomial?

Suppose $X \sim \text{Binom}(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.
Why Normal Out of Binomial?

Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m+k} (.5)^{2m}$$
Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m + k} (.5)^{2m}$$

The z-score of $m + k$ is $\frac{k\sqrt{2}}{\sqrt{m}}$.
Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m + k} (.5)^{2m}$$

The z-score of $m + k$ is $\frac{k\sqrt{2}}{\sqrt{m}}$.

So we want to show $a_k \sim ce^{-\frac{k^2}{m}}$.
Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately. Set

$$a_k = P(X = m + k) = \binom{2m}{m + k} (.5)^{2m}$$

So we want to show $a_k \sim ce^{-\frac{k^2}{m}}$.

i.e. $\ln a_k \sim \ln c - \frac{k^2}{m}$.
Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m+k} (.5)^{2m}$$

i.e. $\ln a_k \sim \ln c - \frac{k^2}{m}$.

Strategy: Compare a_k to a_0 using the approximation

$\ln (1 + x) \sim x$ for x small.
Why Normal Out of Binomial?

Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m+k}(.5)^{2m}$$

i.e. $\ln a_k \sim \ln c - \frac{k^2}{m}$.

$$a_k = \frac{(2m)!(.5)^{2m}}{(m+k)!(m-k)!} = a_0 \frac{(m)(m-1)\ldots(m-k+1)}{(m+k)(m+k-1)\ldots(m+1)}$$

$$= a_0 \frac{(1)(1-\frac{1}{m})\ldots(1-\frac{k-1}{m})}{(1+k/m)(1+\frac{k-1}{m})\ldots(1+\frac{1}{m})}$$
Why Normal Out of Binomial?

Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m+k} (.5)^{2m}$$

i.e. $\ln a_k \sim \ln c - \frac{k^2}{m}$.

$$a_k = \frac{(2m)!(.5)^{2m}}{(m+k)!(m-k)!} = \frac{a_0}{(m+k)(m+k-1)\ldots(m+1)} \frac{(m)(m-1)\ldots(m-k+1)}{(1)(1-\frac{1}{m})\ldots(1-\frac{k-1}{m})}$$

$$= a_0 \frac{(1)(1-\frac{1}{m})\ldots(1-\frac{k-1}{m})}{(1+\frac{k}{m})(1+\frac{k-1}{m})\ldots(1+\frac{1}{m})}$$

So using $\ln (1 + x) \sim x$,

$$\ln a_k \sim \ln a_0 - 2 \left(\frac{1}{m} + \frac{2}{m} + \ldots + \frac{k-1}{m} \right) - \frac{k}{m}$$
Why Normal Out of Binomial?

Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m+k} (.5)^{2m}$$

i.e. $\ln a_k \sim \ln c - \frac{k^2}{m}$.

So using $\ln (1 + x) \sim x$,

$$\ln a_k \sim \ln a_0 - 2 \left(\frac{1}{m} + \frac{2}{m} + \ldots + \frac{k-1}{m} \right) - \frac{k}{m}$$

But $1 + 2 + \ldots + k - 1 = \frac{k(k-1)}{2}$, so
Why Normal Out of Binomial?

Suppose $X \sim Binom(2m, .5)$

We want to understand why $X \sim N(m, \sqrt{.5m})$ approximately.

Set

$$a_k = P(X = m + k) = \binom{2m}{m+k} (.5)^{2m}$$

i.e. $\ln a_k \sim \ln c - \frac{k^2}{m}$.

So using $\ln (1 + x) \sim x$,

$$\ln a_k \sim \ln a_0 - 2 \left(\frac{1}{m} + \frac{2}{m} + \ldots + \frac{k-1}{m} \right) - \frac{k}{m}$$

But $1 + 2 + \ldots k - 1 = \frac{k(k-1)}{2}$, so

$$\ln a_k \sim \ln a_0 - \frac{k^2}{m}$$

as desired.